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Abstract. A Hilbert scheme is a parameter space for all subschemes of projective space
with a fixed Hilbert polynomial. Hilbert schemes are fundamental moduli spaces, whose
local geometry is studied via the deformation theory of projective schemes. We give a
concise introduction to deformation theory, computing specific examples of the cotangent
cohomology of projective schemes. We then give a detailed account of the power series
ansatz, a procedure for computing versal pairs of local moduli functors, and studying the
local geometry of Hilbert schemes. This is explained through two concrete examples. We
end with some open questions about Hilbert schemes and research goals.

1. Hilbert Schemes

We begin with a description of the most basic type of moduli space in algebraic geometry,
namely, Hilbert schemes of projective space over a field. A Hilbert scheme parametrizes all of
the closed subschemes with a fixed Hilbert polynomial of a fixed projective space. Although
they are fundamental, relatively little is known about the geometry of Hilbert schemes in
general. Hartshorne proves in [9] that Hilbert schemes are connected, but beyond this general
results are scarce. According to Murphy’s Law for Hilbert schemes (see [21]), we should not
expect arbitrary Hilbert schemes to have simple geometry. However, there seems to be
a gap in the geography of Hilbert schemes, between the known examples and the known
pathologies. It is in this gap that we intend to work. We introduce some notation, and then
describe some of what is known about the geometry of Hilbert schemes.

Let F denote an algebraically closed field of characteristic zero, and let Pn be the projective
space of dimension n over F. Let X denote a closed subscheme of Pn with Hilbert polynomial
p. IfX 0 is another subscheme of Pn with Hilbert polynomial p, we say thatX andX 0 have the
same type. The Hilbert scheme of subschemes of Pn of type X parametrizes all subschemes
of Pn whose Hilbert polynomial equals the Hilbert polynomial of X. The Hilbert scheme is a
projective scheme over F, whose closed points correspond bijectively to the subschemes of Pn

of type X. Continuously varying a point of the Hilbert scheme corresponds to continuously
deforming subschemes of type X in Pn. For example, one-parameter families of subschemes
of type X correspond to curves in the Hilbert scheme.

The scheme-theoretic version of continuously varying families is given by flat morphisms;
flatness ensures that the fibres of a morphism of schemes are closely related. A morphism
of schemes ' : X ! B is flat at x 2 X if OX ,x

is a flat O
B,'(x)-module via the local homo-

morphism ']

x

, and is flat if it is flat at all x 2 X (see [10, p. 254]). The following theorem of
Grothendieck ([6], [8, p. 6], [11, p. 5–6]) precisely describes the mentioned correspondence.
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Theorem 1.1. Let X ✓ Pn be a closed subscheme with Hilbert polynomial p. There exists a
projective scheme Hn

p

, and a subscheme Un

p

✓ Pn

Hn
p
= Pn⇥FHn

p

flat over Hn

p

, such that the set

of fibres of Un

p

over closed points equals the set of subschemes of Pn of type X. Moreover, if
X ✓ Pn

B

is any flat family over an F-scheme B such that every closed fibre of X has Hilbert
polynomial p, then there exists a unique morphism B ! Hn

p

such that X = B ⇥Hn
p
Un

p

.

The techniques used to establish the existence of Hilbert schemes are somewhat removed
from the tools used to study them. Hilbert schemes are mainly studied via their universal
property.

Let us consider some concrete examples of Hilbert schemes.

Example 1.1. LetX ✓ P2 be a degree � plane curve, in other words, X is the vanishing locus
of a single homogeneous polynomial f 2 B = F[x, y, z] of degree �. The defining equation
f lies in B

�

, the F-span of the
�
2+�

�

�
monomials of degree �. Thus, f =

P
N

i=0 cix
↵i , where

N =
�
2+�

�

� � 1 and x↵i is the ith monomial (after putting them in some order). There is a
bijective correspondence between curves f and coordinates [c0 : c1 : · · · : cN ] 2 PN = P(B

�

),
because X = V (f) is unchanged by scaling f .

Consider the bihomogeneous polynomial F =
P

N

i=0 aix
↵i , where a0, a1, . . . , aN are coordi-

nates on PN . It defines a closed subscheme C = V (F ) ✓ P2
PN = P2⇥F PN such that the fibre

of C over a closed point c = [c0 : c1 : · · · : c
N

] 2 PN is the curve V (f) corresponding to c.
In fact, it can be shown that H2

p

= PN and Un

p

= C, where p(t) = �t � �(��3)
2 is the Hilbert

polynomial of X.

Example 1.2. Let X ✓ P3 be a twisted cubic curve. All such curves are projectively
equivalent to the rational normal curve of degree 3, i.e. the image of the Veronese embedding
⌫3 : P1 ! P3 defined by [u : v] 7! [u3 : u2v : uv2 : v3]. The space of twisted cubics is identified
with the 12-dimensional quotient H0 = SL4(F)/SL2(F). Since twisted cubics have degree 3
and (arithmetic) genus 0, their Hilbert polynomial is p(t) = 3t + 1. However, any disjoint
union of a plane cubic X 0 ✓ P2 ✓ P3 with a reduced point in P3 also has Hilbert polynomial
3t+1. The space H 0

0 of such “degenerate twisted cubics” is 15. Considering H0, H
0
0 ✓ H3

3t+1

as subschemes, let H,H 0 ✓ H3
3t+1 denote their topological closures. Piene and Schlessinger

prove in [17] that H3
3t+1 = H [ H 0, where H,H 0 are nonsingular, rational, and intersect

transversally in a nonsingular, rational, 11-dimensional space.

The second example shows that Hilbert schemes can be reducible, even when they param-
etrize “nice” objects in a low-dimensional projective space. Hilbert schemes are generally
high-dimensional, but, due to their universal property, they can be studied through the ge-
ometry of the subschemes they parametrize. The following theorem tells us how to compute
the Zariski tangent space THn

p ,[X] of Hn

p

at the point [X] associated to X.

Theorem 1.2. Let X ✓ Pn be a closed subscheme with Hilbert polynomial p, and let
Hn

p

be the associated Hilbert scheme. The Zariski tangent space of Hn

p

at [X] is given by

H0(X,N
X/Pn) where N

X/Pn is the normal sheaf of X in Pn.

Proof. Let D = F["] ⇠= F[u]/(u2) denote the ring of dual numbers. The Zariski tangent space
to Hn

p

at [X] is given by the set of morphisms Spec(D) ! Hn

p

such that (") 7! [X] (see [3,
p. 256–8]). Any such morphism corresponds uniquely to a family over Spec(D) by pullback
of Un

p

. Pulling this family back along the canonical map Spec(F) ! Spec(D) yields the
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trivial family X ! Spec(F). In other words, the Zariski tangent space is given by the set of
families X ! Spec(D) whose closed fibre is X ! Spec(F).

Let I
X

✓ B = F[x0, . . . , xn

] be the saturated graded ideal defining X. A closed subscheme
X ✓ Pn

D

is uniquely determined by a saturated graded ideal I 0 ✓ B0 = D[x0, . . . , xn

], and

since flatness is a local condition we work locally in (B0/I 0)[f
�1
]0 = B0[f�1]0/I 0[f�1]0, for

f 2 B0
+ (of positive degree). The local criterion of flatness used in [11, p. 10] implies that a

D-module M 0 is flat if and only if M = M 0⌦
D

F is flat over F and the natural homomorphism
M ⌦F (")!M 0 is injective. Applying this to M 0 = B0[f�1]0/I 0[f�1]0 shows that X is locally
flat over Spec(D) (in the chart Spec (B0[f�1]0/I 0[f�1]0)) if and only if M ⌦F (") ! M 0 is
injective. Proceeding as in [11, p. 11–12] shows that the map is injective if and only if
the ideal I 0[f�1]0 is determined by a B[f�1]0-linear map �

f

: I
X

[f�1]0 ! B[f�1]0/IX [f�1]0.
More precisely, we say that I 0[f�1]0 is determined by �

f

if the ideal I 0[f�1]0 is given by
{a+ "b | a 2 I

X

[f�1]0, b 2 B[f�1]0, �f

(a) = b 2 B[f�1]0/IX [f�1]0}.
Gluing this local data implies that X is flat over D and pulls back to X if and only if on

the local charts Spec (B0[f�1]0/I 0[f�1]0) of X the ideal I 0[f�1]0 is determined by a B[f�1]0-
linear map �

f

: I
X

[f�1]0 ! B[f�1]0/IX [f�1]0, and for every g 2 B0
+ the ideal I 0[(fg)�1]0 is

similarly determined by a B[(fg)�1]0-linear map �
fg

such that the diagram

I
X

[f�1]0 B[f�1]0/IX [f�1]0

I
X

[(fg)�1]0 B[(fg)�1]0/IX [(fg)�1]0

�f

�fg

commutes, where the vertical maps are localizations.
Such data defines a global section of the normal sheaf N

X/Pn = HomPn(I
X

,O
X

), that

is, a homomorphism of sheaves of OPn-modules � : I
X

! O
X

. Indeed, since I
X

= fI
X

and

O
X

= B̂/I
X

are the associated sheaves to the graded B-modules I
X

and B/I
X

, we know that
I

X

(U
f

) = I
X

[f�1]0 and O
X

(U
f

) = B[f�1]0/IX [f�1]0 are exactly the rings and ideals above,
where U

f

= D+(f) is the principal open subscheme of the coordinate f . Commutativity of
the maps �

f

,�
fg

with localizations is equivalent to commutativity with the restrictions

I
X

(U
f

) O
X

(U
f

)

I
X

(U
fg

) O
X

(U
fg

)

�f

⇢
Uf
Ufg

⇢
Uf
Ufg

�fg

where U
fg

equals U
f

\ U
g

= D+(fg). Since the principal open subsets {U
f

} cover Pn, and
since the horizontal maps �

f

,�
fg

are respectively OPn(U
f

)-linear and OPn(U
fg

)-linear, there
is a unique morphism of OPn-modules determined by the data, as desired.

Conversely, a morphism of OPn-modules � : I
X

! O
X

determines compatible homomor-
phisms as above, which in turn determine a closed subscheme X ✓ Pn

D

flat over D that pulls
back to X over F. Hence, global sections � 2 H0(X,N

X/Pn) correspond uniquely to families
X ! Spec(D) that pull back to X ! Spec(F), which in turn determine the Zariski tangent
space. ✏
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Example 1.3. Let X ✓ P2 be the plane conic X = V (y2 � xz), which is the image of
the Veronese embedding ⌫2 : P1 ,! P2 defined by [u : v] 7! [u2 : uv : v2]. Viewing X
as a Cartier divisor on P2, we have N

X/P2 = OP2(X)|
X

(see [10, p. 182]), which equals
OP2(2)|

X

= O
X

(2), and pulls back to OP1(4) under the embedding. Hence, we obtain
TH2

p,[X] = H0(X,O
X

(2)) = H0(P1,OP1(4)) ⇠= F5, where p is the Hilbert polynomial of X.
This agrees with our construction in Example 1.1 of H2

2t+1 = P5.

Example 1.4. Following [11, p. 92–4], we outline Mumford’s second pathological example
from [16]. Let X ✓ P3 be a nonsingular irreducible curve of degree 14 and genus 24. For
example, if we let S ✓ P3 be a cubic surface realized as a blowup of P2 at 6 points in
general position, let H be a hyperplane section of S, and let L be an exceptional curve of the
projection ⇡ : S ! P2, then curves of type X are found in the linear series |4H + 2L| on S.
Varying both the cubic surface and the curve X 2 |4H + 2L| yields a 56-dimensional family
H0 of degree 14, genus 24 curves. However, one computes h0(N

X/P3) = 57, and proves that
no higher-dimensional family contains H0. Hence, the closure H0 in the Hilbert scheme is
a 56-dimensional irreducible component whose general point has a 57-dimensional Zariski
tangent space.

Mumford’s example shows that Hilbert schemes of relatively low-degree, low-genus curves
in P3 may have generically nonreduced components. Mumford’s example is an instance of
Murphy’s Law for Hilbert schemes, formulated in [8, p. 18] as follows: “There is no geometric
possibility so horrible that it cannot be found generically on some component of some Hilbert
scheme.” A precise interpretation of Murphy’s Law is given by Vakil in [21], roughly saying
that Hilbert schemes of nice objects can have arbitrary singularities.

Here is an example which shows that Hilbert schemes of small numbers of points in a
low-dimensional projective space can be reducible.

Example 1.5. Let X ✓ P4 be a subscheme of eight points, i.e. X is a subscheme of length
8 in P4. The smoothable component H ✓ H4

8 is the closure of the set of points of H4
8

corresponding to unions of 8 distinct points in P4. By counting degrees of freedom, we see
that the dimension of H is 32.

Let U = D+(f) ✓ P4 be an open a�ne chart of projective space, where f is any linear
form on P4. If OP4(U) = F[x, y, z, w] is the a�ne coordinate ring of U and m ✓ OP4(U)
is a maximal ideal corresponding to some closed point, then, letting V ✓ m2/m3 be a 7-
dimensional vector subspace, and letting I be the ideal generated by V andm3, the subscheme
X = Spec(OP4(U)/I) ✓ U ✓ P4 has length 8. Varying the closed point defined by m
and the subspace V results in a 25-dimensional family of subschemes of eight points in
P4. Further, for the particular example I = (x2, xy, y2, z2, zw, w2, xz � yw), one directly
computes h0(N

X/P4) = 25 via the cotangent cohomology methods of the next section. Thus,
X cannot lie on the smoothable component, so there exists a nonsmoothable component of
dimension 25, consisting of nonsmoothable fat points of length 8, which do not arise as limits
of 8 distinct points in P4.

Hilbert schemes of points on P2 are smooth and irreducible by [4] or [11, p. 67]. For at
most 8 points, the Hilbert scheme is reducible with two components if and only if n � 4 by
[2], i.e. the example given above is minimal. However, Iarrobino proves in [12] that, for any
n � 3, the Hilbert schemes Hn

`

are reducible for all numbers of points `� 0. In particular,
he proves that the Hilbert schemes H3

`

are reducible for all ` � 102, and improves this bound
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to 78 in [13]. A recent preprint (see [1]) proves that H3
`

is irreducible for `  10 points, while
the minimal ` for which H3

`

has multiple components is not yet known.

2. Basic Deformation Theory

Deformation theory is the study of how geometric objects can be continuously deformed
in families. Thus, the deformation theoretic properties of a closed subscheme X ✓ Pn reflect
the local geometry of the Hilbert scheme near [X] 2 Hn

p

. In this section, we give some
basic definitions and constructions from deformation theory. Particularly important are the
cotangent cohomology modules, which tell us about nontrivial first-order deformations and
obstructions to lifting deformations. We also define versality, which is studied in more depth
in the next section.

Let X and Y be locally finite type, separated F-schemes. A family of deformations of X
over Y is a surjective, flat morphism ' : X ! Y such that there exists a specified F-rational
point y 2 Y and an isomorphism of X with the special fibre '�1(y). We often shorten this
to a family for X over Y . The scheme Y is called the parameter or base of the family, and
X is called the total family. Closed fibres of ' are called deformations of X. We denote such
a family for X over Y by (', y). A morphism (', y)! ('0, y0) between two families for X is
a pair of morphisms X ! X 0, Y ! Y 0 such that the canonical diagram

X

X X 0

Spec(F)

Y Y 0

' '0
y y0

is commutative. An isomorphism of families is a morphism with a two-sided inverse.
A trivial family for X over Y is isomorphic to the family ⇡2 : X ⇥F Y ! Y with any

choice of y 2 Y . A first-order family for X has base Spec(D), where D = F["] is the ring of
dual numbers. An infinitesimal family for X has base Spec(S), where S is a local artinian
F-algebra with residue field F. Every first-order family is infinitesimal.

If X ✓ Pn is a subscheme with Hilbert polynomial p, then the flat families X ✓ Pn

B

mentioned in Theorem 1.1, whose closed fibres have Hilbert polynomial p, are called embedded
families of deformations of X in Pn. Any embedded family for X is a family for X. In order
to study embedded families for X ✓ Pn, we need to define the associated cotangent complex
of the embedding, as developed by Lichtenbaum and Schlessinger in [15]. The cohomology
of the cotangent complex captures information about deformations and obstructions, which
is applied in the power series ansatz in the next section.

We construct the cotangent complex following the exposition of [11, p. 19], but using
graded rings and modules. Let A and B be Z-graded rings, M a graded A-module, and
suppose that A is a graded B-algebra via a degree zero graded homomorphism B ! A.
Suppose that A is generated by homogeneous elements {a

i

}
i2⇤ as a B-algebra, where ⇤ is

an arbitrary index set. Let R = B[{x
i

}
i2⇤] denote a polynomial ring over the same index.

The ring R is naturally a graded B-algebra via deg(x
i

) = deg(a
i

) for all i 2 ⇤. In
particular, the canonical B-algebra homomorphism R ! A has degree 0. The kernel I of
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this map is Z-graded, and there exists a short exact sequence 0 ! I ! R ! A ! 0 of
degree zero homomorphisms of graded B-modules.

Choose homogeneous generators {f
j

}
j2⇤0 for I over some index ⇤0. Let F denote the free

graded R-module of rank |⇤0| whose jth generator has degree �
j

= deg(f
j

). The R-linear
map �0 : F ! I taking the jth generator to f

j

is graded of degree zero, thus has graded
kernel, say Q, giving a short exact sequence

0 Q F =
L

j2⇤0 R(��
j

) I 0
�0

of degree zero homomorphisms of graded R-modules. This constructs the first term F0 = F
of a free resolution of I, where Q is the module of first syzygies (i.e. relations) between
the generators determined by F . The Koszul relations in F are the elements of the form
�0(m)m0 � �0(m0)m, which generate a graded submodule Kos(F ) of F that is clearly con-
tained in Q.

Set L2 := Q/Kos(F ), which is a priori an R-module, but is also easily seen to be a
graded A-module. Indeed, given f 2 I and q 2 Q, we have f = �0(f 0) for some f 0 2 F ,
so fq = �0(f 0)q which equals �0(q)f 0 = 0 modulo Kos(F ). Define L1 := F/IF = F ⌦

R

A,
which is a free A-module, and thus is graded. Set d2 : L2 ! L1 to be the map induced by
the inclusion Q ,! F and set L0 := ⌦

R/B

⌦
R

A. The R-module ⌦
R/B

is graded by setting
deg(b dr) = deg(b) + deg(r) for all homogeneous b 2 B and r 2 R. The tensor product is
naturally graded (as both R- and A-module). Define d1 : L1 ! L0 by the composition of
�0 : F/IF ! I/I2 with the map @ : I/I2 ! L0 taking f 7! df ⌦ 1

A

. The map, d1 is also
graded of degree zero.

It is clear that d1d2 = 0, because d2 is induced by Ker(�0) ,! F and d1 factors through
�0. Thus, we have a complex

L• : L2 L1 L0.
d2 d1

The cotangent complex of the homomorphism B ! A with respect to M is the M -dual
complex

L• : L0 L1 L2d1 d2

of L•, where Li = Hom
A

(L
i

,M) and di is the dual map of d
i

. The ith cotangent cohomology
module is defined to be the ith cohomology of the cotangent complex L•, and is denoted by
T i(A/B,M) or T i

A/B

(M). We also use the notation T i

A/B

, if M = A.

Tracking the gradings through this construction shows that T i

A/B

(M) is a graded A-module

(thus, also a graded B-module) for all i. Importantly, the T i modules do not depend on
the choices of R and F above, as is proved in [11, p. 20–1]. By construction, T i

A/B

(�) is a
covariant functor on Z-graded A-modules. The associated sheaf to T i

A/B

(M) on X = Proj(A)

is denoted by T i

X/Y

(M ), where Y = Proj(B) and M = fM is the associated sheaf on X. If

M = O
X

, then we write T i

X/Y

, and if Y = Spec(F), we write T i

X

. (The T i sheaves exist for
general morphisms X ! Y and O

X

-modules by localization of the a�ne construction, as in
[18, p. 16], but our presentation is needed for explicit computations.)

We now work out the cotangent complex explicitly in two important situations.
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Key Example 2.1. Let B = F[x0, . . . , xn

] be the standard Z-graded polynomial ring over a
field F, let A = B/I be a graded quotient, and letM be a finitely generated graded A-module.
In the construction of the cotangent complex of B !! A with respect to M we can choose
R = B. Let f1, . . . , fr be generators for I of degrees �1, . . . , �r, so that F =

L
r

j=1 B(��
j

),
and Q = Ker(�0) is the kernel of the natural surjection F !! I. For computer calculations,
it is useful to extend this to the second syzygies. Hilbert’s syzygy theorem guarantees the
existence of a finite free resolution of I (of length  n + 1), which Macaulay2 computes
explicitly via the command res, so we exploit this resolution as part of the available data.
Thus, there is an exact sequence

0 F
n+1 · · · F1 F0 I 0

�n+1 �2 �1 �0

with F0 = F as above, such that Q = Ker(�0) = Im(�1) = F1/Ker(�1) is presented as
a quotient of a free B-module. The A-module L2 is defined as Q/Kos(F0), and since �1

surjects onto Q, lifting Kos(F0) to Kos(F0)0 ✓ F1 gives L2 = F1/Kos(F0)0. We observe that
L1 = F0/IF0 = F0 ⌦B

A is the free A-module
L

r

j=1 A(��j). The A-module L0 is trivial,
because ⌦

R/B

= ⌦
B/B

= (0). Since d2 is induced by the inclusion of Q ✓ F = F0, which is
now represented by �1, the cotangent complex is

L• : 0 Hom
A

(
L

r

j=1 A(��j),M) Hom
A

(F1/Kos(F0)0,M)
d1 d2

where d2 = �
t

1 is the transpose of �1 considered as a matrix with entries in A. We find that

T 0
A/B

(M) = (0), T 1
A/B

(M) = Ker(�
t

1), T 2
A/B

(M) = Coker(�
t

1).

Using Ker(d2) = {� : L1 !M |Ker(�) ◆ Im(d2)}, we find that T 1
A/B

(M) = Hom
A

(I/I2,M).

If M = A, then this implies that T 1
A/B

= N
A/B

:= Hom
A

(I/I2, A) is the normal module of
A over B.

Example 2.2. The cotangent cohomology modules of a plane curve X ✓ P2 are easy to
describe. Let B = F[x, y, z] and let f 2 B

�

a homogeneous element defining X. The exact
sequence 0 ! B(��) ! I

X

! 0 given by multiplication by f is a free B-resolution of the
ideal I

X

= (f) of X. By the description above, the cotangent cohomology of B !! A with
respect to any M is T 0

A/B

(M) = T 2
A/B

(M) = (0) and T 1
A/B

(M) = Hom
A

(A(��),M). If X is

a conic and M = A, then T 1
A/B

= A(2), so (N
A/B

)0 = (T 1
A/B

)0 = A2
⇠= F5, since B2

⇠= F6 and
we quotient by the F-span of f .

Key Example 2.3. Let us now compute the cotangent cohomology of F! A with respect
to M . Since R = B, we use a free resolution of I over B to compute the cotangent complex.
As before, we have L2 = Q/Kos(F0) = F1/Kos(F0)0 and L1 =

L
r

j=1 A(��j), but now L0 is
di↵erent. Indeed, L0 = ⌦

R/F⌦R

A = ⌦
B/F⌦B

A with ⌦
B/F =

L
n

j=0 B ·dx
j

, which shows that
L0 is equal to

L
n

j=0 A · dx
j

= A(�1)n+1. Thus, d1 : L1 ! L0 is a map of free A-modules,
d1 :

L
r

j=1 A(��j) ! A(�1)n+1. Since d1 is induced by the composition of F0/IF0 ! I/I2

with f 7! df ⌦ 1
A

, we find that d1 equals the transpose Jacobian Jac(�0)
t

= Jac(f1, . . . , fr)
t

of the generators f1, . . . , fr, whose (k, `)-entry is
@f

`

@x
k

mod I. Hence, the cotangent complex
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is

L• : Hom
A

�
A(�1)n+1,M

�
Hom

A

�L
r

j=1 A(��j),M
�

Hom
A

�
F1/Kos(F0)0,M

�d1 d2

where d1 = Jac(�0). This shows that

T 0
A/F(M) = Ker(Jac(�0)), T 1

A/F(M) = T 1
A/B

(M)/ Im(Jac(�0)), T 2
A/F(M) = T 2

A/B

(M).

In particular, if M = A, then the cotangent complex is

L• : A(1)n+1
L

r

j=1 A(�j) Hom
A

(F1/Kos(F0)0, A),
Jac(�0) �

t
1

which gives a form of the cotangent complex amenable to explicit computer-aided compu-
tation of the cotangent cohomology modules. The module T 1

A/F = N
A/B

/ Im(Jac(�0)) is

the cokernel of the Jacobian map to N
A/B

= Ker(�
t

1), which enables us to compute T 1
A/F

explicitly via the free resolution of I. If A = B, so that I = (0) in the above construction,
we must have T 1

B/F(M) = T 2
B/F(M) = (0).

Example 2.4. To compute T 1
A/F for the conic curve X = V (y2 � xz), we compute the

cokernel of the map Jac(f) =
⇥�z 2y �x⇤ : A(1)3 ! A(2). This is the quotient of A(2)

by the maximal ideal hx, y, zi. Thus, we obtain T 1
A/F = F(2) ⇠= F. (If char(F) = 2, then

T 1
A/F = A(2)/hx, zi = (F[y]/(y2)) (2) ⇠= F2.)

It is also helpful to recognize the T 0 modules in a di↵erent guise (see [11, p. 23]).

Theorem 2.1. For any homomorphism B ! A of graded rings and any graded A-module
M , we have T 0

A/B

(M) = Hom
A

(⌦
A/B

,M) = Der
B

(A,M). If M = A, then this implies that

T 0
A/B

= T
A/B

is the tangent module of A over B.

Proof. Recall that d1 : L1 ! L0 is defined by a composition L1 !! I/I2 ! L0. The second
map, @, appears in the conormal sequence of the quotient of B-algebras R/I = A (i.e. the
“second exact sequence” of [10, p. 173]). By surjectivity of the first map, we get a new exact
sequence

I/I2 L0 = ⌦
R/B

⌦
R

A ⌦
A/B

0

L1 = F0/IF0

@

�0

d1

showing that ⌦
A/B

= Coker(d1). Taking dual modules with respect to M shows that
Hom

A

(⌦
A/B

,M) = Ker(d1) = T 0
A/B

(M). The tangent module is T
A/B

= Hom
A

(⌦
A/B

, A)
by definition. ✏

To relate various cotangent cohomology modules and enable computations, we have the
following exact sequence.
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Theorem 2.2. Let C ! B and B ! A and be homomorphisms of graded rings, and M a
graded A-module. There is a long exact sequence of cotangent cohomology modules

0 T 0
A/B

(M) T 0
A/C

(M) T 0
B/C

(M)

T 1
A/B

(M) T 1
A/C

(M) T 1
B/C

(M)

T 2
A/B

(M) T 2
A/C

(M) T 2
B/C

(M).

Sketch of proof. This is proved in the non-graded case in [11, p. 22–3] by judicious choices
in the construction of the cotangent complex. Following the proof, all choices can be made
to preserve gradings. ✏

For instance, if C = F ,! B = F[x0, . . . , xn

] and B !! A = B/I, then we know that
T 0
A/B

(M) = T 1
B/F(M) = T 2

B/F(M) = (0) from our previous calculations. This yields an exact
sequence

0 T 0
A/F(M) T 0

B/F(M) T 1
A/B

(M) T 1
A/F(M) 0

and an isomorphism T 2
A/B

(M) ⇠= T 2
A/F(M). Setting M = A in the exact sequence, we have

0 T
A/F T

B/F N
A/B

T 1
A/F 0

giving a generalized normal sequence (dual to the conormal sequence) for arbitrary (possibly
singular) subschemes of Pn. In terms of the associated sheaves, we have

0 T
X

TPn |
X

N
X/Pn T 1

X

0,

which shows that T 1
X

is the cokernel of the sheaf morphism TPn |
X

! N
X/Pn . This is the

definition of T 1
X

given in [8, p. 99].

Example 2.5. Since the module of Kähler di↵erentials of the coordinate ring of P2 equals
⌦

B/F = B(�1)n+1, our previous computations for the plane conicX = V (y2�xz) fit together
into the long exact sequence

0 Ker(Jac(f)) B(1)3 ⌦
B

A = A(1)3 A(2) F(2) 0
Jac(f)

with Jac(f) =
⇥�z 2y �x⇤ as above.

We now relate the cotangent cohomology modules with deformations. Let X be a locally
finite type, separated F-scheme. An infinitesimal family ' : X ! Spec(S) for X is called
locally trivial if there exists an open covering {U

i

} of X such that the corresponding open
covering {X

Ui} of X satisfies the condition that every '|XUi
: X

Ui ! Spec(S) is a trivial family
for U

i

. For any local artinian F-algebra S with residue field F, let D
X

(S) denote the set of
isomorphism classes of infinitesimal families for X over Spec(S), let D0

X

(S) ✓ D
X

(S) be the
subset of locally trivial families, and, ifX is projective, let Dem

X

(S) denote the set of embedded
families for X ✓ Pn over Spec(S). Theorem 1.2 shows that first-order embedded families
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are given by Dem

X

(F["]) = THn
p ,[X] = H0(X,N

X/Pn), and we can also interpret the first-order
non-embedded deformations of X cohomologically, by using the cotangent cohomology.

Theorem 2.3. If X be a locally finite type, separated F-scheme, then we have an isomor-
phism D0

X

(F["]) ⇠= H1(X,T
X

), and an exact sequence

0 H1(X,T
X

) D
X

(F["]) H0(X,T 1
X

) H2(X,T
X

),

which we refer to as the comparison sequence, where T
X

is the tangent sheaf of X over F
and T 1

X

is the first cotangent cohomology sheaf of X.

Proof. This is proved in [18, p. 64–8], and in [11, p. 81] in a more general form. ✏
Example 2.6. Let X = Proj(A) ✓ P2 be a nonsingular curve of degree � and genus g. The
comparison sequence reduces to

0 H1(X,T
X

) D
X

(F["]) H0(X,T 1
X

) 0.

In particular, the space of first-order families for X is at least as large as H1(X,T
X

). By
Serre duality and Riemann-Roch we have h1(T

X

) � 3g � 3 (with equality if g � 2), giving
a lower bound for dimF(DX

(F["])). (As an aside, we also see that if g � 2, then X has
nontrivial locally trivial families, since h1(T

X

) > 0.)
To get an upper bound, considerX as a Cartier divisor on P2. We have N

X/P2 = O
X

(�) and
deg(N

X/P2) = X2 = �2, where X2 = X ·X denotes self-intersection. The long exact sequence
in cohomology associated to the short exact sequence 0 ! OP2 ! OP2(�) ! O

X

(�) ! 0
contains a surjection (of finite dimensional vector spaces) H0(P2,OP2(�))!! H0(X,O

X

(�)),
which shows that h0(N

X/P2)  h0(OP2(�)) =
�
2+�

�

�
.

Using g = (��1)(��2)
2 , it follows that 3g � 3 >

�
2+�

�

�
if and only if � � 7. Thus, these

estimates show that if X is a plane curve of degree at least seven, then the space of first-
order families for X is strictly larger than the space of first-order embedded families, that
is, there exist non-embeddable deformations of the embedded curve X ✓ P2.

Example 2.7. If X = Spec(A), then the comparison sequence reduces to an isomorphism
D

X

(F["]) ⇠= H0(X,T 1
X

) = T 1
A/F, showing that T 1

A/F parametrizes isomorphism classes of first-

order families for X. If X is nonsingular, then T 1
A/F = (0) since the conormal sequence is

exact, which implies that X has no nontrivial first-order deformations, i.e. X is rigid. Thus,
if X is an arbitrary nonsingular scheme, then X is locally rigid, i.e. D0

X

(F["]) = D
X

(F["]).
Example 2.8. Let X = Spec(A) ✓ A2, where A = F[x, y]/

�
y2�x(x�1)(x��)�, be an a�ne

elliptic curve with � 6= 0, 1. Since X is a�ne and nonsingular, it is rigid, having no nontrivial
first-order deformations. However, the algebraic family X = Spec(A) for X over the base
D
�
(t+�)(t+��1)� ✓ A1 with variable t given byA = F[x, y, t]/

�
y2�x(x�1)(x�(�+t))

�
has

fibres which are all mutually non-isomorphic elliptic curves, and is thus not trivial. Hence,
X can be nontrivially deformed in an algebraic family, but not in any first-order family. This
example appears in [18, p. 26].

The notion of versality links the deformation theory of X ✓ Pn and the local geometry of
the Hilbert scheme at [X]. The usual definition of versality is functorial, and rather abstract,
however, in our primary case of interest it reduces to two pullback properties. If X ✓ Pn
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is a closed subscheme, then Dem

X

(�) naturally defines a covariant functor of artinian rings
(Art) ! (Sets) from the category (Art) of local artinian F-algebras with residue field F to

the category of sets. The functor Dem

X

naturally extends to a functor dDem

X

: (Com)! (Sets),
where (Com) is the category of local complete noetherian F-algebras with residue field F,
defined by setting dDem

X

(R) = lim �Dem

X

(R/mm+1), where m is the maximal ideal of R 2 (Com)
(using that R/mm+1 is artinian for all m � 0). A formal pair for Dem

X

is a pair (R, '̂) such

that '̂ = {'(m)}
m�0 2 dDem

X

(R). Such (R, '̂) consists of a sequence of embedded families for
X over the rings R/mm+1, m � 0, giving cartesian squares as follows:

· · · X (m) X (m�1) · · · X (1) X (0) = X

· · · Spec(R/mm+1) Spec(R/mm) · · · Spec(R/m2) Spec(F)

8
>><

>>:

9
>>=

>>;
'(m) '(m�1) '(1) '(0)

⇡m ⇡1

We think of '̂ as a possibly non-infinitesimal limit family bX ! Spec(R) over R.
A formal pair (R, '̂) for Dem

X

is called versal if it satisfies the following two properties.
First, given any embedded infinitesimal family  : Y ! Spec(S) for X, we require that

there exists a homomorphism µ : R ! S such that  equals the pullback '(m)
S

of '(m) over
R/mm+1 ! S for all m � 0. Second, for every surjection T !! S in (Art) and every
ordered pair

�
µ : R ! S, 0 : Y 0 ! Spec(T )

�
with  0 2 Dem

X

(T ) such that the pullback

families  0
S

= '
(m)
S

are equal for all m � 0, we require that there exists ⌫ : R ! T such

that µ = ⇡ � ⌫ and  0 = '
(m)
T

for m � 0. A versal pair is called universal, if given any  
in the first property there exists a unique µ, and is called miniversal if this holds for each
first-order  .

The first versality property roughly says that versal pairs have su�ciently many deforma-
tion parameters. The second property says that versal pullbacks always lift. For example, if
S = F[u]/(ur), r � 1, and  : Y ! Spec(S), then the first property implies that there exists

µ : R ! S such that  = '
(m)
S

for m � r � 1. Moreover, if T = F[u]/(ur+1), T !! S is the
canonical surjection, and  0 : Y 0 ! Spec(T ), then the first property gives µ : R ! S such

that  0
S

= '
(m)
S

for m � r � 1, and by the second property there exists ⌫ : R ! T lifting µ

such that  0 = '
(m)
T

for m � r. A versal couple is “su�ciently universal” in the precise sense
described by these properties.

Example 2.9. Let X ✓ P2 = Proj(B) be the cuspidal cubic V (y2z � x3). By the methods
of the next section, the universal pair for Dem

X

equals (F[[u1, . . . , u9]], '̂) where

'(m) : Proj

✓
B[[u1, . . . , u9]]

(F ) + (u1, . . . , u9)m+1

◆
! Spec

✓
F[[u1, . . . , u9]]

(u1, . . . , u9)m+1

◆

and F = (y2z� x3� u1xz
2� u2z

3� u3x
2y� u4x

2z� u5xy
2� u6xyz� u7y

3� u8y
2z� u9yz

2).
On the other hand, a miniversal pair for Dem

X

equals (F[[u1, u2]],  ̂) where

 (m) : Proj

✓
B[[u1, u2]]

(y2z � x3 � u1xz2 � u2z3) + (u1, u2)m+1

◆
! Spec

✓
F[[u1, u2]]

(u1, u2)m+1

◆

Other examples of versal pairs can be explicitly computed via the power series ansatz.
11



3. The Power Series Ansatz

Versal pairs can often be explicitly computed via the power series ansatz. This is a proce-
dure for computing versal pairs for local moduli functors of artinian rings. We describe the
sequence of steps used to compute a versal pair (R, '̂), '̂ = {'(m)}

m�0 for the functor Dem

X

,
where X ✓ Pn is a closed subscheme with saturated graded ideal I

X

✓ B = F[x0, . . . , xn

].
The ultimate goal of this calculation is to relate the versal pair to the geometry of the

Hilbert scheme locally at [X]. If a comparison theorem applies, then the versal base ring
R is isomorphic to the completion of the local ring OHn

p ,[X] of the Hilbert scheme at [X].
This approach proves fruitful in [17, p. 764]. We begin with a bare outline of the procedure,
followed by a detailed description alongside a running example. We then reproduce the result
of [17, p. 769–71] with our own Macaulay2 implementation.

Overview. The main idea is to start with a general first-order family '(1) for X over a
deformation parameter ring R = F[[u1, . . . , uk

]], and successively build the versal deformation
by lifting each '(m) to '(m+1). In the following, we usemth-order to refer to terms of, or up to,
degree m in the variables u1, . . . , uk

. Each lift exists if and only if its associated obstruction
(defined below) vanishes. We force this by iteratively adding obstruction equations to a base
ideal for the ring R. If at some point no higher order nontrivial lifts are possible, the ansatz
terminates, however, there is no guarantee that this occurs for any given example.

To commence the power series ansatz, we compute the first-order deformations of X.
There is some choice as to whether one includes all deformations, or merely the nontrivial
deformations. The di↵erence determines whether we attempt to compute the universal pair,
or a miniversal pair, respectively. Either way, we compute H0(X,N

X/Pn) explicitly. To
specialize to nontrivial families, one may compute T 1

A/F, with A = B/I
X

, via the cotangent
complex. The defining ideal I

X

is determined by the first map �0 of its free resolution, and
we study families for X by perturbing the map �0 and its first syzygy map �1.

Denoting the computed basis vectors for H0(X,N
X/Pn) by �1

0, . . . ,�
k

0, the most general

first-order family perturbing �0 is represented by �(1)
0 = �0 +

P
k

i=1 ui

�i

0, introducing the

free deformation parameters u1, . . . , uk

. Computing the first syzygies of this map gives �(1)
1 ,

which perturbs �1 to first order and satisfies �(1)
0 �(1)

1 ⌘ 0 mod (u1, . . . , uk

)2.

Having computed �(1)
0 and �(1)

1 , we attempt to lift �(1)
0 to second order. In general, there

is an obstruction in T 2
A/F to the existence of a lift, in our case expressed as a vector with

second-order entries in A ⌦F F[[u1, . . . , uk

]] where A = B/I
X

. Considering the deformation
parameters as coe�cients, we force the obstruction to vanish by setting all of its coe�cients
to zero. This modifies our versal base ring to R = F[[u1, . . . , uk

]]/J0 (up to second order),
where J0 is determined by the vanishing coe�cients. Over these equations, the desired lift
�
(2)
0 exists, and we then compute the perturbation �(2)

1 . This gives a solution to the equation

�(2)
0 �(2)

1 ⌘ 0 mod (u1, . . . , uk

)3 + J0.

Equivalently, letting �0 denote a basis for T 2
A/F and letting ⌦0 denote the obstruction in

T 2
A/F, this solves the equation

�(2)
0 �(2)

1 + (�0⌦0)
t ⌘ 0 mod (u1, . . . , uk

)3.
12



The abelian group H0(X,N
X/Pn) acts on the set of all second-order lifts of �(1)

0 (we explain
this in detail in the next section). After solving for second-order lifts, it is necessary to modify

the choice of �(2)
0 and �

(2)
1 to minimize the third-order terms of �(2)

0 �(2)
1 , which determine

the next obstruction. We then check for a polynomial solution.
The rest of the algorithm proceeds similarly. We attempt to lift �(2)

0 to third order, and
add additional, third-order terms to the obstruction equations if a nontrivial obstruction is
encountered. We then compute the lifts �(3)

1 of �(2)
1 and �1 of �0 simultaneously, and check

that the equation

�(3)
0 �(3)

1 + (�1⌦1)
t ⌘ 0 mod (u1, . . . , uk

)4

is satisfied. Following this, we minimize the fourth-order terms of �(3)
0 �(3)

1 by modifying the
third-order lifts, and check for a polynomial solution. Iterating, the process stops if we reach
a polynomial solution over the deformation parameter ring F[[u1, . . . , uk

]] to the equation

�(1)
0 �(1)

1 + (�1⌦1)t = 0

with initial conditions �(0)
0 = �0,�

(0)
1 = �1. If such a solution exists, then it determines the

versal pair (R, '̂) such that R = F[[u1, . . . , uk

]]/ Im(⌦t

1) and '(m) : X (m) ! Spec(R/mm+1) is

the flat family forX defined by X (m) = Proj
⇣
B ⌦F (R/mm+1)/ Im(�(m)

0 )
⌘
with the canonical

map to the base, for all m � 0.

A Running Example. Now we provide a more detailed description of the power series
ansatz, and make the process explicit with a running example. Our approach follows a com-
bination of the those of [19], [20], [14], and the source-code of the versalDeformations.m2
package for Macaulay2 (see [5]). After solving for the generic first-order family, the ansatz
involves repeating the following five steps at each order of lifting: lifting the ideal, computing
the obstruction, lifting the syzygies, minimizing the obstruction, and checking for a solution.

Step 1: Part One. Compute the most general first-order family for X.

The generic first-order family of deformations of X is given by computing an explicit basis
of THn

p ,[X] = H0(X,N
X/Pn). Let �0 : F0 ! B = F[x0, . . . , xn

] be the homomorphism sending
the jth standard basis vector of F0 =

L
r

j=1 B(��
j

) to the corresponding degree �
j

generator
f
j

of the graded ideal I
X

= (f1, . . . , fr) of X. The basis for H0(X,N
X/Pn) is computed via

the cotangent complex, resulting in r-vectors �1
0, . . . ,�

k

0 with entries in A = B/I
X

. Lifting

to B, we form the first-order perturbation �(1)
0 = �0 + �

(1)
0 , where �(1)

0 =
P

k

i=1 ui

�i

0.

Example 3.1. Let A = F[x, y, z]/(x, y, z)2 and X = Spec(A) ✓ A3 ✓ P3. We compute the
most general first-order family via the following Macaulay2 commands.
Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : B = QQ[x,y,z];

i2 : I = (ideal(x, y, z))^2

2 2 2
o2 = ideal (x , x*y, x*z, y , y*z, z )

o2 : Ideal of B

We give the di↵erentials the names used in the contruction of the cotangent complex.
13



i3 : (phi0, phi1) = (gens I, syz gens I)
o3 = (| x2 xy xz y2 yz z2 |, {2} | -y 0 -z 0 0 0 0 0 |)

{2} | x -z 0 -y 0 -z 0 0 |
{2} | 0 y x 0 0 0 0 -z |
{2} | 0 0 0 x -z 0 0 0 |
{2} | 0 0 0 0 y x -z 0 |
{2} | 0 0 0 0 0 0 y x |

o3 : Sequence

In the Key Example 2.1, we show that N
A/B

= Ker
⇣
�
t

1

⌘
. The columns of the following

matrix form a basis of N
A/B

, which we lift to B, showing that dimF(NA/B

) = 18.
i4 : A = B/I; basisN = lift(gens ker(A ** transpose phi1), B)
o5 = {-2} | z y x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

{-2} | 0 0 0 z y x 0 0 0 0 0 0 0 0 0 0 0 0 |
{-2} | 0 0 0 0 0 0 z y x 0 0 0 0 0 0 0 0 0 |
{-2} | 0 0 0 0 0 0 0 0 0 z y x 0 0 0 0 0 0 |
{-2} | 0 0 0 0 0 0 0 0 0 0 0 0 z y x 0 0 0 |
{-2} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z y x |

6 18
o5 : Matrix B <--- B
i6 : k = rank source basisN
o6 = 18

By Theorem 1.2, this shows that the point [X] 2 H3
4 is singular, since H3

4 is irreducible of
dimension 12, whose general point corresponds to 4 distinct points in P3. We define a new
ring with deformation parameters u1, . . . , uk

for k = 18.
i7 : B’ = QQ[x,y,z][u_1..u_k];
i8 : (phi00, phi10) = (sub(phi0, B’), sub(phi1, B’));

We obtain �(1)
0 , setting phi01 to be its first-order part.

i9 : phi01 = vars B’ * transpose sub(basisN, B’); transpose phi01
1 6

o9 : Matrix B’ <--- B’
o10 = | u_1z+u_2y+u_3x |

| u_4z+u_5y+u_6x |
| u_7z+u_8y+u_9x |
| u_10z+u_11y+u_12x |
| u_13z+u_14y+u_15x |
| u_16z+u_17y+u_18x |

6 1
o10 : Matrix B’ <--- B’
i11 : Phi01 = phi00 + phi01; transpose Phi01

1 6
o11 : Matrix B’ <--- B’
o12 = | u_1z+u_2y+u_3x+x2 |

| u_4z+u_5y+u_6x+xy |
| u_7z+u_8y+u_9x+xz |
| u_10z+u_11y+u_12x+y2 |
| u_13z+u_14y+u_15x+yz |
| u_16z+u_17y+u_18x+z2 |

6 1
o12 : Matrix B’ <--- B’

Step 1: Part Two. Compute the first-order perturbation �(1)
1 of �1.
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We use a free resolution

0 F
n+1 · · · F1 F0 I

X

0
�n+1 �2 �1 �0

of the graded ideal I
X

of X. The beginning of a free resolution of the ideal I(1) ✓ B(1)

defined by �(1)
0 is · · ·! F

(1)
0

�
(1)
0�! I(1) ! 0 where F (1)

0 and B(1) are the tensor products of F0

and B with F[u1, . . . , uk

]/(u1, . . . , uk

)2. To compute �(1)
1 , we apply the necessary condition

�(1)
0 �(1)

1 ⌘ 0 mod (u1, . . . , uk

)2, solving for an unknown �(1)
1 satisfying

0 ⌘ �(1)
0 �(1)

1 =
⇣
�0 + �

(1)
0

⌘⇣
�1 + �

(1)
1

⌘
⌘ �0�1 +

⇣
�0�

(1)
1 + �

(1)
0 �1

⌘
mod (u1, . . . , uk

)2.

Gathering first-order terms, this gives �0�
(1)
1 = ��(1)

0 �1, where �0,�
(1)
0 ,�1 are known explic-

itly. Solving this equation for �(1)
1 via matrix quotients gives the required perturbation of the

first syzygies of �0. The Macaulay2 matrix quotient command f // g, applied to matrices f
and g with a common target, returns a quotient q such that r = f - g*q is the remainder
of f modulo a Gröbner basis for the image of g (r is also directly obtained by f % g; see

the documentation for // at [5]). By Theorem 1.2 and [18, p. 275], there exists such a �(1)
1 ,

that is, the remainder is zero. Continuing through the remaining resolution maps, we may
lift the entire resolution to first-order in the same way.

Example 3.2. We continue with the fat point determined by the ideal I
X

= (x, y, z)2,

solving for the first-order part of �(1)
1 using the matrix quotient command //.

i13 : phi11 = -phi01 * phi10 // phi00; Phi11 = phi10 + phi11
6 8

o13 : Matrix B’ <--- B’
o14 = | -u_6-y 0 -u_9-z -u_12 0 -u_15 ...

| u_3-u_5+x -u_9-z -u_8 u_6-u_11-y -u_15 -u_14-z ...
| -u_4 u_6+y u_3-u_7+x -u_10 u_12 u_6-u_13 ...
| u_2 -u_8 0 u_5+x -u_14-z 0 ...
| u_1 u_5-u_7 u_2 u_4 u_11-u_13+y u_5+x ...
| 0 u_4 u_1 0 u_10 u_4 ...

6 8
o14 : Matrix B’ <--- B’
i15 : Phi01 * Phi11 % (ideal(u_1..u_k))^2 == 0
o15 = true

Hence, we have computed �(1)
0 and �(1)

1 such that �(1)
0 �(1)

1 ⌘ 0 mod (u1, . . . , uk

)2.

Step 2: Part One. Compute the second-order lift �(2)
0 of �(1)

0 .

Following [20, p. 25] or [19, p. 135], we proceed by supposing that second-order terms

�
(2)
0 and �

(2)
1 were found that lift the ideal and its syzygies to second order. If we let

�(2)
0 = �(1)

0 + �
(2)
0 and �(2)

1 = �(1)
1 + �

(2)
1 , then we would have

�(2)
0 �(2)

1 =
⇣
�(1)

0 + �
(2)
0

⌘⇣
�(1)

1 + �
(2)
1

⌘
= �(1)

0 �(1)
1 + �(1)

0 �
(2)
1 + �

(2)
0 �(1)

1 + �
(2)
0 �

(2)
1 ,

which would reduce to �(1)
0 �(1)

1 + �0�
(2)
1 + �

(2)
0 �1 ⌘ 0 mod (u1, . . . , uk

)3. Considering this
equation modulo the ideal I

X

of X, we would have

�(1)
0 �(1)

1 + �
(2)
0 �1 ⌘ 0 mod (u1, . . . , uk

)3 + I
X

,
15



which would leave us with
�
(2)
0 �1 ⌘ ��(1)

0 �(1)
1 mod I

X

which makes sense, since �(1)
0 �(1)

0 contains only second-order terms. In particular, this lifting

equation puts a necessary condition on �(2)
0 . We attempt to solve the lifting equation for �(2)

0

by matrix quotients.

Example 3.3. Continuing our example, we solve the lifting equation above.
i16 : I’ = sub(I, B’); A’ = B’/I’;

o16 : Ideal of B’

i18 : phi02 = transpose(transpose(-Phi01 * Phi11 % I’) // transpose phi10);
transpose phi02

1 6
o18 : Matrix B’ <--- B’

o19 = | u_3u_7-u_7^2-u_4u_8-u_1u_9+u_2u_13+u_1u_16 |
| u_6u_7+u_5u_13-u_7u_13-u_4u_14-u_1u_15+u_4u_16 |
| u_7u_9+u_8u_13-u_4u_17-u_1u_18 |
| u_7u_12+u_11u_13-u_13^2-u_10u_14-u_4u_15+u_10u_16 |
| u_13u_14+u_7u_15-u_10u_17-u_4u_18 |
| -u_9^2-u_8u_15+u_9u_16+u_6u_17+u_3u_18-u_7u_18 |

6 1
o19 : Matrix B’ <--- B’

i20 : Phi02 = Phi01 + phi02; transpose Phi02

1 6
o20 : Matrix B’ <--- B’

o21 = | u_3u_7-u_7^2-u_4u_8-u_1u_9+u_2u_13+u_1u_16+u_1z+u_2y+u_3x+x2 |
| u_6u_7+u_5u_13-u_7u_13-u_4u_14-u_1u_15+u_4u_16+u_4z+u_5y+u_6x+xy |
| u_7u_9+u_8u_13-u_4u_17-u_1u_18+u_7z+u_8y+u_9x+xz |
| u_7u_12+u_11u_13-u_13^2-u_10u_14-u_4u_15+u_10u_16+u_10z+u_11y+u_12x+y2 |
| u_13u_14+u_7u_15-u_10u_17-u_4u_18+u_13z+u_14y+u_15x+yz |
| -u_9^2-u_8u_15+u_9u_16+u_6u_17+u_3u_18-u_7u_18+u_16z+u_17y+u_18x+z2 |

6 1
o21 : Matrix B’ <--- B’

Step 2: Part Two. Compute the first obstruction to lifting.

After transposing the terms in the lifting equation, matrix division solves for �(2)
0 in such a

way that ��(1)
0 �(1)

1 ��(2)
0 �1 is (the transpose of) a remainder upon factorization, defining the

obstruction obs0 to lifting the first-order perturbation �(1)
0 to second order. The obstruction

obs0 determines an element ⌦0 in T 2
A/F, which, after computing an explicit basis of T 2

A/F,
is a vector with entries in A ⌦F F[[u1, . . . , uk

]]. Treating the deformation parameters as
coe�cients, we force the obstruction to vanish by adding any nontrivial coe�cients to an
obstruction ideal J0 and working over the new base F[[u1, . . . , uk

]]/J0.

Example 3.4. Continuing with the fat point of order four, we compute obs0 and ⌦0.
i22 : obs0 = transpose(transpose(-Phi01 * Phi11 % I’) % transpose phi10);

transpose obs0

1 8
o22 : Matrix B’ <--- B’

o23 = | -u_3u_4z-u_3u_5y+u_4u_5z+u_5^2y+u_1u_6z+u_2u_6y+u_5u_6x+u_3u_7y+...
| -u_6u_8y+u_4u_9z+u_5u_9y-u_7u_9y+u_8u_10z+u_8u_11y+u_8u_12x-...
| -u_3u_8y+u_5u_8y+u_6u_8x+u_7u_8y+u_2u_9y-u_8u_13x-u_2u_14y-...
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| -u_4u_6z-u_5u_6y-u_6^2x+u_6u_7y-u_5u_10z+u_7u_10z+u_8u_10y+...
| -u_8u_12y-u_9u_12x+u_12u_14x+u_5u_15y+u_6u_15x-u_7u_15y-...
| -u_6u_8y-u_6u_9x+u_8u_13y+u_9u_13x+u_6u_14x-u_13u_14x+u_2u_15y+...
| u_9^2y-u_14^2y-u_9u_15x-u_14u_15x-u_9u_16y+u_14u_16y+u_15u_16x-...
| -u_8u_9y-u_8u_14y+u_8u_16y+u_5u_17y-u_7u_17y+u_2u_18y

8 1
o23 : Matrix B’ <--- B’

To compute ⌦0, we need a basis for T 2
A/F. We use the description T 2

A/F = Coker
⇣
�
t

1

⌘
obtained

from the cotangent complex.
i24 : T2 = prune(Hom(image phi1/image koszul(2,phi0),A)/image(A ** transpose phi1));

i25 : for i from -5 to 5 list hilbertFunction(i, T2)

o25 = {0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0}

The module is concentrated in degree �2.
o25 : List

The columns of the following matrix give a basis of T 2
A/F.

i26 : basisT2 = lift((gens image(T2.cache.pruningMap))*(gens image basis(-2,T2)),B)

o26 = {-3} | z 0 0 -y 0 0 0 0 0 0 x 0 0 0 0 0 0 0 |
{-3} | 0 z x 0 0 0 0 0 0 0 -z 0 0 0 0 y 0 0 |
{-3} | 0 0 0 0 y x 0 0 0 0 0 0 0 0 0 x 0 0 |
{-3} | 0 0 0 0 0 0 z y x 0 -y 0 0 0 0 0 0 0 |
{-3} | 0 0 0 0 0 0 0 0 0 x 0 0 0 y 0 0 0 0 |
{-3} | 0 0 0 0 0 0 0 0 0 0 0 y x x 0 0 0 0 |
{-3} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 -y |
{-3} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 y 0 |

8 18
o26 : Matrix B <--- B

We obtain ⌦0 from obs0 by finding its coe�cients in terms of the given basis of T 2
A/F.

i27 : Omega0 = transpose obs0 // sub(basisT2, B’)

o27 = | -u_3u_4+u_4u_5+u_1u_6+u_4u_7-u_2u_10-u_1u_13
| u_5u_6-u_6u_7+2u_4u_9+u_8u_10-u_2u_12-u_5u_13+u_7u_13-u_1u_15-...
| u_8u_12-u_5u_15+u_7u_15-u_4u_18
| u_3u_5-u_5^2-u_2u_6-u_3u_7+u_7^2+u_1u_9+u_2u_11-u_2u_13+u_1u_14-...
| -u_3u_8+u_5u_8+u_7u_8+u_2u_9-u_2u_14-u_1u_17
| 2u_6u_8-u_5u_9+u_7u_9-u_8u_11+u_5u_14-u_7u_14-u_2u_15+u_4u_17-...
| -u_4u_6-u_5u_10+u_7u_10+u_4u_11+u_1u_12-u_4u_13
| u_4u_9+u_8u_10-u_4u_14-u_1u_15
| -u_6^2+u_9u_10+u_6u_11+u_3u_12-u_5u_12-u_7u_12-u_11u_13+u_13^2+...
| -u_9u_12+u_12u_14+u_6u_15-u_11u_15+u_13u_15-u_10u_18
| u_5u_6-u_6u_7+u_4u_9-u_2u_12-u_5u_13+u_7u_13+u_4u_14-u_4u_16
| -u_6u_8+u_8u_13+u_2u_15-u_4u_17
| -u_6u_9+u_8u_12+u_9u_13+u_6u_14-u_13u_14+u_3u_15-2u_5u_15+...
| -u_8u_12+u_5u_15-u_7u_15+u_4u_18
| -u_9u_15-u_14u_15+u_15u_16+u_12u_17+u_6u_18-u_13u_18
| -u_6u_8+u_5u_9-u_7u_9+u_8u_11-u_8u_13-u_5u_14+u_7u_14+u_1u_18
| -u_8u_9-u_8u_14+u_8u_16+u_5u_17-u_7u_17+u_2u_18
| -u_9^2+u_14^2+u_9u_16-u_14u_16+u_6u_17-u_11u_17+u_13u_17+...

18 1
o27 : Matrix B’ <--- B’

We also compute the obstruction ideal J0.
i28 : J0 = ideal image transpose Omega0;
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o28 = ideal (- u u + u u + u u + u u - u u - u u , u u - u u + 2u u + ...
3 4 4 5 1 6 4 7 2 10 1 13 5 6 6 7 4 9

o28 : Ideal of B’

Step 2: Part Three. Compute the second-order lift �(2)
1 of the relations �(1)

1 .

To solve for �(2)
1 = �(1)

1 + �
(2)
1 , note that if such a lift were to exist, then we would have

�(2)
0 �(2)

1 + (�0⌦0)t ⌘ 0 mod (u1, . . . , uk

)3, where �0 is our basis of T 2
A/F. Expanding and

collecting second-order terms, this equals �0�
(2)
1 +�(1)

0 �
(1)
1 +�(2)

0 �1+(�0⌦0)t = 0, which gives

the equation �0�
(2)
1 = �(�(1)

0 �
(1)
1 + �

(2)
0 �1 + (�0⌦0)t), allowing us to solve for �(2)

1 by matrix
quotients. Again, we push this method through the entire resolution, if desired.

Example 3.5. Continuing our example, we compute the lifted relations.
i29 : Delta0 = sub(basisT2, B’);

8 18
o29 : Matrix B’ <--- B’

i30 : phi12 = -(phi02*phi10 + phi01*phi11 + transpose(Delta0*Omega0)) // phi00;
Phi12 = Phi11 + phi12

6 8
o30 : Matrix B’ <--- B’

o31 = | -u_6-y 0 -u_9-z -u_12 0 -u_15 ...
| u_3-u_5+x -u_9-z -u_8 u_6-u_11-y -u_15 -u_14-z ...
| -u_4 u_6+y u_3-u_7+x -u_10 u_12 u_6-u_13 ...
| u_2 -u_8 0 u_5+x -u_14-z 0 ...
| u_1 u_5-u_7 u_2 u_4 u_11-u_13+y u_5+x ...
| 0 u_4 u_1 0 u_10 u_4 ...

6 8
o31 : Matrix B’ <--- B’

We check that this gives a solution modulo (u1, . . . , uk

)3.
i32 : B’’ = B’/J0; sub(Phi02 * Phi12, B’’ / (ideal(u_1..u_k))^3) == 0

o33 = true

Equivalently, we check the following:
i34 : use B’; sub(Phi02*Phi12+transpose(Delta0*Omega0),B’/(ideal(u_1..u_k))^3) == 0

o35 = true

Let us make a brief interlude to better understand the structure of the set of lifts. If a
lift �(m)

0 exists for any m � 1, and �(m)
1 is the corresponding lift on relations, then the set of

all lifts of order m is a torsor under a H0(X,N
X/Pn)-action [11, p. 47]. To see this, suppose

that �(m)
0 lifts �(m�1)

0 , and for any vector  0 2 H0(X,N
X/Pn), let  1 satisfy �0 1+ 0�1 = 0.

Let �(m)
0 =

P
|↵|=m

u↵�↵

0 denote the initial lift, where ↵ = (↵1, . . . ,↵k

) is a multi-index of
length k and u↵ = u↵1

i

· · · u↵k
k

.

The action of  0 on the lift �(m)
0 is given by ( 0,�

(m)
0 ) 7! P

|↵|=m

u↵(�↵

0 +  0). This
modified lift has modified relations

P
|↵|=m

u↵(�↵

1 +  1), where �↵

0�1 + �0�
↵

1 = 0 for all ↵.

To verify this, denote �(m)
0 = �(m�1)

0 + �
(m)
0 and �(m)

1 = �(m�1)
1 + �

(m)
1 , so that

⇣
�(m�1)

0 +
X

|↵|=m

u↵(�↵

0 +  0)
⌘⇣

�(m�1)
1 +

X

|↵|=m

u↵(�↵

1 +  1)
⌘
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equals
⇣
�(m)

0 +
P

|↵|=m

u↵ 0

⌘⇣
�(m)

1 +
P

|↵|=m

u↵ 1

⌘
, which reduces to

�(m)
0 �(m)

1 +
⇣
�0(

X

|↵|=m

u↵ 1) + (
X

|↵|=m

u↵ 0)�1

⌘
mod (u1, . . . , uk

)m+1,

which is equivalent to �(m)
0 �(m)

1 +
⇣P

|↵|=m

u↵(�0 1+ 0�1)
⌘
⌘ 0+0 = 0 mod (u1, . . . , uk

)m+1.

Thus, the H0(X,N
X/Pn)-action does not change the product �(m)

0 �(m)
1 up to order m. This

shows that, despite our definition, the obstruction obs
m�2 is independent of the choice of

lift �(m)
0 . However, the terms of order m + 1 do change under the action by addition ofP

|↵|=m

u↵(�(1)
0  1 +  0�

(1)
1 ). Since the order m + 1 terms of �(m)

0 �(m)
1 determine �(m+1)

0 and
the obstruction obs

m�1, it is necessary to choose the order m lift that minimizes these terms.

Step 2: Part Four. Modify the second-order lifts to minimize the next obstruction.

After solving for the lifts �(2)
0 and �

(2)
1 , the product ��(2)

0 �(2)
1 may have residual third-

order terms. That is, there may exist nontrivial third-order terms that would vanish under
a di↵erent choice of �(2)

0 . We find this lift and eliminate these terms, because they would
otherwise appear as obstructions in the lifting equation for the next order, even though they
are not true obstructions. To do this, we form a matrix from the vectors �(1)

0  1 +  0�
(1)
1 ,

where  0 ranges over the basis of H0(X,N
X/Pn), and eliminate residual terms via matrix

quotients.

Example 3.6. Continuing with the fat point, we compute the residual terms modulo J0+I
X

.
i36 : A’’ = B’/(J0 + I’); resTerm1 = (Phi02 * Phi12) ** A’’

o37 = 0

1 8
o37 : Matrix A’’ <--- A’’

The residual terms are trivial, so no simplification is necessary.

Step 2: Part Five. Check for a polynomial solution.

The procedure terminates when we find a polynomial solution �(m)
0 �(m)

1 +(�
m�2⌦m�2)t = 0

for some m � 1. After eliminating residual higher-order terms, we check whether this occurs.

Example 3.7. We check our example for a polynomial solution.
i38 : Phi02 * Phi12 + transpose(Delta0 * Omega0) == 0
o38 = false

We do not have a solution to �(2)
0 �(2)

1 + (�0⌦0)t ⌘ 0. However, note the following:
i39 : sub(Phi02 * Phi12, B’’) == 0
o39 = true

This implies that there must be some terms missing from from our final matrix �1.

Step 3: Part One. Compute the third-order lift �(3)
0 of �(2)

0 .

Having solved to second order, obtaining �(2)
0 = �0+�

(1)
0 +�

(2)
0 and �(2)

1 = �1+�
(1)
1 +�

(2)
1

such that �(2)
0 �(2)

1 ⌘ 0 mod (u1, . . . , uk

)3, to compute a third-order lift �(3)
0 we derive the

lifting equation
�
(3)
0 �1 ⌘ �(�(2)

0 �(2)
1 ) mod (u1, . . . , uk

)4 + I
X
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in the same manner as for the previous lifting equation. By matrix quotients, we use this
necessary condition to solve for �(3)

0 .

Example 3.8. Continuing our example, we compute the third-order lift �(3)
0 .

i40 : phi03 = lift(transpose((transpose(-Phi02*Phi12)**A’’)//transpose(phi10**A’’)),B’);
1 6

o40 : Matrix B’ <--- B’
i41 : Phi03 = Phi02 + phi03; Phi03 == Phi02

1 6
o41 : Matrix B’ <--- B’
o42 = true

This lift is trivial, as expected from our polynomial solution check in the previous step.

Step 3: Part Two. Compute the second obstruction to lifting.

The obstruction obs1 = ��(2)
0 �(2)

1 � �(3)
0 �1 to lifting �(2)

0 to third order defines !1 2 T 2
A/F,

and ⌦1 = ⌦0 + !1 determines the ideal J1 of extended equations of the base space.

Example 3.9. Continuing with the fat point of order four, we compute obs1 and !1.
i43 : obs1 = lift(transpose((transpose(-Phi02*Phi12)**A’’)%transpose(phi10**A’’)),B’);

1 8
o43 : Matrix B’ <--- B’
i44 : omega1 = lift(transpose(obs1 ** A’) // sub(basisT2, A’), B’)
o44 = 0

18 1
o44 : Matrix B’ <--- B’
i45 : Omega1 = Omega0 + omega1;

18 1
o45 : Matrix B’ <--- B’

Step 3: Part Three. Compute the third-order lifts �(3)
1 of �(2)

1 and �1 of �0.

Example 3.10. Continuing our example, we compute �(3)
1 and �1. We collect third-order

terms of the product �(3)
0 �(3)

1 + (�1⌦1)t, which vanishes to fourth order, and solve for the
unknowns via matrix quotients.
i46 : simuLift1 = -(phi01*phi12+phi02*phi11+phi03*phi10+transpose(Delta0*omega1))

// (phi00|transpose Omega0)
o46 = | 0 0 0 0 0 0 0 0 |

| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| -u_14+u_16 0 -u_17 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| -u_1 u_7 0 -u_4 -u_13 -u_7 0 0 |
| -u_13 0 0 0 0 0 0 0 |
| 0 0 u_13 0 0 0 0 0 |
| 0 -u_13 0 0 0 0 0 0 |
| 0 -u_17 0 -u_14+u_16 u_18 -u_17 0 0 |
| 0 -u_14+u_16 0 u_13 u_15 0 0 u_17 |
| 0 0 0 u_7 0 0 0 0 |
| 0 0 0 u_1 u_7 0 0 0 |
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| u_7 0 0 -u_13 0 0 0 0 |
| u_4 -u_13 -u_7 0 0 u_13 0 0 |
| u_1 0 0 0 0 u_7 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 u_1 0 0 u_4 u_1 u_7 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 u_4 0 0 0 0 u_13 |
| 0 -u_4 0 0 -u_10 -u_4 -u_13 0 |

24 8
o46 : Matrix B’ <--- B’

i47 : phi13 = lift(simuLift1^(toList(0..(numgens target phi1)-1)),B’);
Phi13 = Phi12+phi13;

6 8
o47 : Matrix B’ <--- B’

6 8
o48 : Matrix B’ <--- B’

The bottom portion gives the lift �1.
i49 : delta1 = transpose lift(simuLift1^(

toList((numgens target phi1)..(numgens target phi1)+17)),B’);

8 18
o49 : Matrix B’ <--- B’

i50 : Delta1 = Delta0 + delta1

o50 = | -u_14+u_16+z 0 -u_1 -u_13-y 0 0 0 0 ...
| 0 z u_7+x 0 0 -u_13 -u_17 -u_14+u_16 ...
| -u_17 0 0 0 u_13+y x 0 0 ...
| 0 0 -u_4 0 0 0 -u_14+u_16+z u_13+y ...
| 0 0 -u_13 0 0 0 u_18 u_15 ...
| 0 0 -u_7 0 0 0 -u_17 0 ...
| 0 0 0 0 0 0 0 0 ...
| 0 0 0 0 0 0 0 u_17 ...

8 18
o50 : Matrix B’ <--- B’

We verify that we have found a solution up to fourth order.
i51 : use B’; sub(Phi03*Phi13+transpose(Delta1*Omega1),B’/(ideal(u_1..u_k))^4) == 0

o52 = true

Step 3: Part Four. Modify the third-order lifts to minimize the next obstruction.

Example 3.11. We compute the residual terms.
i53 : resTerm2 = (Phi03 * Phi13) ** A’’

o53 = 0

1 8
o53 : Matrix A’’ <--- A’’

Step 3: Part Five. Check for a polynomial solution.

Example 3.12. We check the following:
i54 : Phi03 * Phi13 + transpose(Delta1 * Omega1) == 0

o54 = true

Hence, we have computed an explicit polynomial solution to �(1)
0 �(1)

1 + (�1⌦1)t = 0

over B0 = B[[u1, . . . , u18]]. We have �(1)
0 = �(2)

0 , �(1)
1 = �(1)

1 , �1 = �1, and ⌦1 = ⌦0.
The corresponding versal pair for Dem

X

has base ring R = F[[u1, . . . , u18]]/ Im(⌦t

0) and versal
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family '̂ = {'(m)}
m�0 where '(m) : Proj

⇣
B ⌦F (R/mm+1)/ Im

�
�(2)

0

�⌘! Spec(R/mm+1) for

all m � 2.

The Degenerate Twisted Cubic. Let X ✓ P3 be the degenerate twisted cubic defined
by the ideal I

X

= (xz, yz, z2, x3). We reproduce the result of [17, p. 769-70], computing the
universal pair for Dem

X

by implementing the power series ansatz in Macaulay2.

Step 1: Part One. Compute the most general first-order family for X.

Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : B = QQ[x,y,z,w];

i2 : I = monomialIdeal(x*z, y*z, z^2, x^3);

o2 : MonomialIdeal of B

i3 : (phi0, phi1) = ((res I).dd_1, (res I).dd_2)

o3 = (| xz yz z2 x3 |, {2} | -y -z 0 -x2 |)
{2} | x 0 -z 0 |
{2} | 0 x y 0 |
{3} | 0 0 0 z |

o3 : Sequence

We compute a basis for the degree zero piece of the normal module N
A/B

.
i4 : A = B/I; N = prune ker(A ** transpose phi1);

basisN = lift((gens image(N.cache.pruningMap))*(gens image basis(0,N)),B)

o6 = {-2} | 0 0 0 0 0 0 0 0 0 zw 0 x2 xy xw 0 0 |
{-2} | 0 0 0 0 0 0 0 0 0 0 zw xy y2 yw 0 x2 |
{-2} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 zw 0 |
{-3} | zw2 y3 y2w yw2 x2y x2w xy2 xyw xw2 0 0 0 0 0 0 0 |

4 16
o6 : Matrix B <--- B

Though this basis is not identical to the basis of [17, p. 769-70], their spans are equal. Thus,

dim
K

(TH3
3t+1,[X]) = 16, as is proved in [17, p. 766]. We use this basis for �(1)

0 .

i7 : k = rank source basisN; B’ = B[u_1..u_k];

i9 : (phi00, phi10) = (sub(phi0, B’), sub(phi1, B’));

i10 : phi01 = vars B’ * transpose sub(basisN, B’); transpose phi01

1 4
o10 : Matrix B’ <--- B’

o11 = {0, -2} | u_10zw+u_12x2+u_13xy+u_14xw |
{0, -2} | u_11zw+u_12xy+u_13y2+u_14yw+u_16x2 |
{0, -2} | u_15zw |
{0, -3} | u_1zw2+u_2y3+u_3y2w+u_4yw2+u_5x2y+u_6x2w+u_7xy2+u_8xyw+u_9xw2 |

4 1
o11 : Matrix B’ <--- B’

i12 : Phi01 = phi00 + phi01; transpose Phi01

1 4
o12 : Matrix B’ <--- B’

o13 = {0, -2} | u_10zw+u_12x2+u_13xy+u_14xw+xz |
{0, -2} | u_11zw+u_12xy+u_13y2+u_14yw+u_16x2+yz |
{0, -2} | u_15zw+z2 |
{0, -3} | u_1zw2+u_2y3+u_3y2w+u_4yw2+u_5x2y+u_6x2w+u_7xy2+u_8xyw+u_9xw2+x3 |
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4 1
o13 : Matrix B’ <--- B’

Step 1: Part Two. Compute the first-order perturbation �(1)
1 of �1.

i14 : phi11 = -phi01 * phi10 // phi00; Phi11 = phi10 + phi11
4 4

o14 : Matrix B’ <--- B’
o15 = {0, 2} | -u_11w-y u_12x+u_13y+u_14w-u_15w-z u_16x ...

{0, 2} | u_10w+x 0 u_12x+u_13y+u_14w-u_15w-z ...
{0, 2} | 0 u_10w+x u_11w+y ...
{0, 3} | -u_16 0 0 ...

4 4
o15 : Matrix B’ <--- B’

Hence, we have computed �(1)
0 and �(1)

1 . We verify that this is a first-order solution.
i16 : Phi01 * Phi11 % (ideal(u_1..u_k))^2 == 0
o16 = true

Step 2: Part One. Compute the second-order lift �(2)
0 of �(1)

0 .

i17 : I’ = sub(I, B’); A’ = B’/I’;
o17 : Ideal of B’
i19 : phi02 = lift(transpose(transpose((-Phi01*Phi11)**A’)//transpose(sub(phi1,A’))),B’);

transpose phi02
1 4

o19 : Matrix B’ <--- B’
o20 = {0, -2} | u_10u_13yw+u_10u_14w2-u_2u_16y2-u_3u_16yw-u_4u_16w2

{0, -2} | -u_10u_12yw+u_11u_12xw+u_11u_13yw+u_11u_14w2+u_5u_16xy+u_6u_16xw+...
{0, -2} | -u_12^2x2-2u_12u_13xy-u_13^2y2-2u_12u_14xw-2u_13u_14yw-u_14^2w2+...
{0, -3} | u_9u_10w3+u_4u_11w3-u_1u_14w3+u_1u_15w3

4 1
o20 : Matrix B’ <--- B’
i21 : Phi02 = Phi01 + phi02; transpose Phi02

1 4
o21 : Matrix B’ <--- B’
o22 = {0, -2} | u_10u_13yw+u_10u_14w2-u_2u_16y2-u_3u_16yw-u_4u_16w2+u_10zw+...

{0, -2} | -u_10u_12yw+u_11u_12xw+u_11u_13yw+u_11u_14w2+u_5u_16xy+...
{0, -2} | -u_12^2x2-2u_12u_13xy-u_13^2y2-2u_12u_14xw-2u_13u_14yw-...
{0, -3} | u_9u_10w3+u_4u_11w3-u_1u_14w3+u_1u_15w3+u_1zw2+u_2y3+u_3y2w+...

4 1
o22 : Matrix B’ <--- B’

Step 2: Part Two. Compute the first obstruction to lifting.

i23 : obs0 = lift(transpose(transpose((-Phi01*Phi11)**A’)%transpose(sub(phi1,A’))),B’);
transpose obs0
1 4

o23 : Matrix B’ <--- B’
o24 = {0, -3} | u_1u_16zw2+u_9u_16xw2 |

{0, -3} | -u_4u_16zw2 |
{0, -3} | -2u_14u_16x2w+u_15u_16x2w |
{0, -4} | 0 |

4 1
o24 : Matrix B’ <--- B’
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We must compute a basis for the degree zero piece of T 2
A/K

.

i25 : T2 = prune(Hom(image phi1/image koszul(2,phi0),A)/image((transpose phi1)**A));

The columns of the following matrix give a basis of T 2
A/K

in degree zero.

i26 : basisT2 = lift((gens image(T2.cache.pruningMap))*(gens image basis(0,T2)), B)

o26 = {-3} | zw2 xw2 0 0 |
{-3} | 0 0 -zw2 0 |
{-3} | 0 0 0 x2w |
{-4} | 0 0 0 0 |

4 4
o26 : Matrix B <--- B

We obtain ⌦0 from obs0 as follows.
i27 : Omega0 = transpose obs0 // sub(basisT2, B’)

o27 = | u_1u_16 |
| u_9u_16 |
| u_4u_16 |
| -2u_14u_16+u_15u_16 |

4 1
o27 : Matrix B’ <--- B’

i28 : J0 = ideal image transpose Omega0

o28 = ideal (u u , u u , u u , - 2u u + u u )
1 16 9 16 4 16 14 16 15 16

o28 : Ideal of B’

Step 2: Part Three. Compute the second-order lift �(2)
1 of the relations �(1)

1 .

i29 : Delta0 = sub(basisT2, B’);

4 4
o29 : Matrix B’ <--- B’

i30 : phi12 = -(phi02*phi10 + phi01*phi11 + transpose(Delta0*Omega0)) // phi00;
Phi12 = Phi11 + phi12

4 4
o30 : Matrix B’ <--- B’

o31 = {0, 2} | -u_11w-y -u_10u_12w+u_12x+u_13y+u_14w-u_15w-z ...
{0, 2} | u_10w+x -u_2u_16y-u_3u_16w ...
{0, 2} | 0 u_10w+x ...
{0, 3} | -u_16 2u_13u_16 ...

4 4
o31 : Matrix B’ <--- B’

We check that this gives a solution modulo (u1, . . . , uk

)3.
i32 : use B’; (Phi02*Phi12 + transpose(Delta0*Omega0))%(ideal(u_1..u_k))^3 == 0

o33 = true

i34 : B’’ = B’/J0; sub(Phi02*Phi12, B’’/(ideal(u_1..u_k))^3) == 0

o35 = true

We have �(2)
0 , �(2)

1 , �0, and ⌦0 such that �(2)
0 � �(2)

1 + (�0 � ⌦0)t ⌘ 0 mod (u1, . . . , uk

)3.

Step 2: Part Four. Modify the second-order lifts to minimize the next obstruction.

i36 : A’’ = B’/(J0 + I’); resTerm1 = (Phi02 * Phi12) ** A’’; transpose resTerm1

1 4
o37 : Matrix A’’ <--- A’’
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o38 = {0, -3} | -u_10^2u_12yw2+u_10u_11u_12xw2+...
{0, -3} | -u_10^2u_12u_13yw2-u_10^2u_12u_14w3+...
{0, -3} | u_10^2u_12^2yw2-u_10u_11u_12^2xw2-...
{0, -4} | -u_7u_10^2u_12y2w2-u_8u_10^2u_12yw3-...

4 1
o38 : Matrix A’’ <--- A’’

To describe the H0(X,N
X/Pn)-action on lifts, we use the following list, whose ith entry

consists of the pair (�i

0,�
i

1) of first-order perturbations corresponding to the ith basis vector
of the normal module in degree zero.
i39 : actL = apply(gens B’, i -> {contract(i,phi01), contract(i,phi11)});

We use the following matrix, whose ith column contains the modification to the lowest order
residual terms of the product �(2)

0 � �(2)
1 after acting on the lift by the ith basis vector.

i40 : actM = matrix{apply(actL, l -> transpose(l#0*phi11 + phi01*l#1))};

4 16
o40 : Matrix B’ <--- B’

We compute coe�cients.
i41 : simpResTerm1 = -transpose resTerm1 // ((transpose phi1|actM) ** A’’);

20 1
o41 : Matrix A’’ <--- A’’

i42 : coeffsM1 = lift(simpResTerm1^(toList((numgens target phi1)..
(numgens target phi1)+(numgens source actM)-1)),B’)

16 1
o42 : Matrix B’ <--- B’

This gives correction terms, which modify our lifts.
i43 : phi02corr = sum apply(#actL, i -> coeffsM1_(i,0)*(actL#i#0));

transpose phi02corr

1 4
o43 : Matrix B’ <--- B’

o44 = {1, -2} | -1/2u_5u_11u_12xw-1/2u_5u_6u_16xw+1/2u_5u_10u_16xw+2u_10u_12xw+...
{1, -2} | -1/2u_5u_11u_12yw-1/2u_5u_6u_16yw+1/2u_5u_10u_16yw+2u_10u_12yw+...
{1, -2} | 0
{1, -3} | 2u_6u_10xw2+u_8u_10yw2-3u_10^2xw2+2u_3u_11yw2+u_8u_11xw2

4 1
o44 : Matrix B’ <--- B’

i45 : phi12corr = sum apply(#actL, i -> coeffsM1_(i,0)*(actL#i#1))

o45 = {0, 2} | 0 -1/2u_5u_11u_12w-1/2u_5u_6u_16w+1/2u_5u_10u_16w+... ...
{0, 2} | 0 0 ...
{0, 2} | 0 0 ...
{0, 3} | 0 0 ...

4 4
o45 : Matrix B’ <--- B’

i46 : Phi02 = Phi02 + phi02corr; Phi12 = Phi12 + phi12corr;

1 4
o46 : Matrix B’ <--- B’

4 4
o47 : Matrix B’ <--- B’

i48 : phi02 = Phi02 - Phi01; phi12 = Phi12 - Phi11;

1 4
o48 : Matrix B’ <--- B’
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4 4
o49 : Matrix B’ <--- B’

We verify that we are left with a solution modulo (u1, . . . , uk

)3.
i50 : use B’; (Phi02*Phi12 + transpose(Delta0*Omega0))%(ideal(u_1..u_k))^3 == 0
o51 = true

Step 2: Part Five. Check for a polynomial solution.

i52 : Phi02 * Phi12 + transpose(Delta0 * Omega0) == 0
o52 = false
i53 : sub(Phi02 * Phi12, B’’) == 0
o53 = false

The procedure continues with Step 3 in the same manner. It turns out that we already
have the complete obstructions, so we summarize the rest of the computations. We obtain
a polynomial solution to �(1)

0 � �(1)
1 + (�1 � ⌦1)t = 0, where �(1)

0 = �(6)
0 , �(1)

1 = �(4)
1 ,

�1 = �7, and ⌦1 = ⌦0. The corresponding universal pair has base ring

R = F[[u1, . . . , u16]]/J0 = F[[u1, . . . , u16]]/(u16) \ (u1, u4, u9,�2u14 + u15),

which is isomorphic to the base ring derived in [17, p. 769–70], and the versal family stabi-
lizes at n = 6. This confirms that the (analytically) local geometry of the Hilbert scheme
of twisted cubics H3

3t+1 at the point [X] is a transverse intersection of two reduced 12-
dimensional and 15-dimensional components, as in [17, p. 771].

4. Research Goals and the Future

We discuss where to go from here, in the short-term, medium-term, and long-term.

4.1. Short-term Goals.

New Examples. Having successfully implemented the power series ansatz in Macaulay2 for
a small number of examples, the most obvious thing to do next is to compute more examples!
Specifically, the procedure gives good results for small numbers of points in P3, and for the
classical case of twisted cubics, as we demonstrated above. These results were expected,
since we know that H3

p

is irreducible for small numbers of points p, and the analysis of H3
3t+1

is done by hand in [17]. But what if we try to push the method of the twisted cubics paper
through in more complex situations?

Specifically, we interpret the analysis done for the twisted cubics as follows: there are
limited possibilities for which subschemes of P3 have Hilbert polynomial p(t) = 3t + 1,
and studying these tells us the number and dimensions of components of H3

p

; the scheme
structure of H3

p

is studied by computations of Zariski tangent spaces of su�ciently general
points; finally, the comparison theorem [17, p. 764] allows the study of the intersection of
the components of H3

p

via the power series ansatz applied to a su�ciently general point of
the intersection. Thus, the local geometry of the Hilbert scheme computed by the ansatz
captures much of the global geometry. We will analyze Hilbert schemes of other objects
similarly, using the Macaulay2 implementation of the power series ansatz to augment our
ability to analyze the local geometry. If the points we analyze are su�ciently general, in
whatever context, this could lead to a global analysis.

Concretely, we will begin with the Hilbert scheme H4
4t+1 of rational quartic curves in P4

(or more generally Hn

nt+1 for n � 4), and the Hilbert scheme of rational quartic surfaces
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in P5. In another vein, it may be possible to directly analyze H3
p

, where p � 11 is a small
number of points, via the power series ansatz at a well-chosen collection of p points.

Improvements to the Algorithm. The power series ansatz begins with a computation of
a basis of the normal module to form the most general first-order family, represented by �(1)

0 .
For isolated singularities, we can restrict to the most general nontrivial family by computing
instead a basis of T 1

A/K

via the cotangent complex. This reduces the number of deformation
parameters, which speeds up the Macaulay2 sessions. In fact, this is already implemented in
the versalDeformations.m2 package of [5]. For projective schemes, however, the analogous
reduction is not currently implemented, since the relationship between nontrivial deforma-
tions and T 1

X

is governed by the comparison sequence, and is more complicated.
But, for the degenerate twisted cubic above, computing the degree zero piece of T 1

A/K

does give a basis for the 10-dimensional space of nontrivial first-order perturbations of �0

matching that in [17, p. 769-70]. Moreover, the ansatz applied to this 10-dimensional space
terminates faster than using the full 16-dimensional space of first-order families. Since our
goal is to probe more complex cases, at the boundary of our computational ability, reducing
the complexity of the ansatz for prjective schemes by using T 1

A/K

rather than N
A/B

is an
important step.

4.2. Medium-term Goals.

Multigraded Hilbert Schemes. In [7], Haiman and Sturmfels prove the existence of
quasiprojective multigraded Hilbert schemes, which parametrize ideals in multigraded rings
with a specified generalized Hilbert function, and generalize Hilbert schemes and other re-
lated constructions. The comparison theorem of [17] relates the local geometry of Hilbert
schemes to the local geometry of multigraded Hilbert schemes in specific instances, but we do
not know whether this comparison theorem su�ces in other cases of interest. Thus, we would
like to gain a better understanding of the multigraded case, and how to use the geometry
of multigraded Hilbert schemes to study the questions we encounter about Hilbert schemes.
On the other hand, the geometry of multigraded Hilbert schemes is another possible avenue
for research.

4.3. Long-term Goals.

Straddling the Unknown. The underlying idea for this project is that there is interesting
geometry to be discovered at the border between well-behaved Hilbert schemes, and nasty
ones. Murphy’s Law [21], [8], mentioned in the first section, tells us that general Hilbert
schemes have arbitrarily “bad” geometry. We have seen some hints of this in the first section.
But Hilbert schemes of small numbers of points in small projective spaces are irreducible and
smooth (see [4], [2]), and, as we have seen, the Hilbert scheme of twisted cubics has a rather
simple and beautiful geometry that we can explcitly analyze via deformation theory and the
power series ansatz. Our hope is that Hilbert schemes of other low-degree, low-dimensional
objects have similarly nice geometry, which can be analyzed via computational methods.
This would result in a better understanding of the “geography” of Hilbert schemes, as we
would be pushing the boundaries of what has been discovered, and mapping out some of the
well-behaved examples that will appear before all hell breaks loose.
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