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1. Consider the linear transformation Q : R2 → R2 defined by Q(a1, a2) = (2a1 + a2, 2a2).

Alternate 1. Consider the linear transformation R : Q2 → Q2 defined by R(b1, b2) = (3b1, b1 + 3a2).

(a) Prove that the subspace U = span
(
(1, 0)

)
⊂ R2 is invariant under Q.

Solution. We have to check that for every u ∈ U , we have Q(u) ∈ U . Any vector
u ∈ U has the form (c, 0) for c ∈ F, and we have Q(u) = Q(c, 0) = (2c + 0, 2 · 0) =
(2c, 0) ∈ U . Thus, U is Q-invariant. �

Alternate (a) Prove that the subspace U = span
(
(0, 1)

)
⊂ Q2 is invariant under R.

Solution. We have to check that for every u ∈ U , we have R(u) ∈ U . Any vector
u ∈ U has the form (0, c) for c ∈ F, and we have R(u) = R(0, c) = (3 · 0, 0 + 3c) =
(0, 3c) ∈ U . Thus, U is R-invariant. �

(b) Show that there does not exist a Q-invariant subspace W such that R2 = U ⊕W .

Solution. We prove this by contradiction. If there exists such a W , then we have
2 = dim(R2) = dim(U) + dim(W ) = 1 + dim(W ), so dim(W ) = 1 and W is spanned
by any nonzero w ∈ W . Such a w is an eigenvector, because Q(w) ∈ W = span(w).
Hence, if w = (w1, w2), then for some λ ∈ F, we have λw = (λw1, λw2) = Q(w) =
(2w1 + w2, 2w2). As w /∈ U , we know w2 6= 0, which means that λ = 2. Thus,
2w1 = 2w1 + w2, which implies w2 = 0, a contradiction. �

Alternate (b) Show that there does not exist a R-invariant subspace W such that Q2 = U ⊕W .

Solution. We prove this by contradiction. If there exists such a W , then we have
2 = dim(R2) = dim(U) + dim(W ) = 1 + dim(W ), so dim(W ) = 1 and W is spanned
by any nonzero w ∈ W . Such a w is an eigenvector, because R(w) ∈ W = span(w).
Hence, if w = (w1, w2), then for some λ ∈ F, we have λw = (λw1, λw2) = R(w) =
(3w1, w1 + 3w2). As w /∈ U , we know w1 6= 0, which means that λ = 3. Thus,
3w2 = w1 + 3w2, which implies w1 = 0, a contradiction. �
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2. Consider the linear transformation T : F2 → F2 defined by T (x1, x2) = (x2,−x1).
Alternate 2. Consider the linear transformation T : F2 → F2 defined by T (x1, x2) = (−x2, x1).

(a) Suppose that F = R. List all T -invariant subspaces of R2.

Solution. This map is clockwise rotation by 90◦, given by the matrix [ 0 1
−1 0 ]. As we

have seen in class, such a rotation of R2 has only trivial invariant subspaces. Thus,
the T -invariant subspaces of R2 are 0 and R2 itself. �

Alternate (a) Suppose that F = R. List all T -invariant subspaces of R2.

Solution. This map is counterclockwise rotation by 90◦, given by the matrix [ 0 −1
1 0 ].

As we have seen in class, such a rotation of R2 has only trivial invariant subspaces.
Thus, the T -invariant subspaces of R2 are 0 and R2 itself. �

(b) Suppose that F = C. Compute all eigenvalues of T . For each eigenvalue, give a
corresponding eigenvector.

Solution. Suppose that v = (v1, v2) is an eigenvector, with eigenvalue λ. We have
(λv1, λv2) = (v2,−v1). Substituting, −v1 = λv2 = λ(λv1), which gives λ2 + 1 = 0 (or
v1 = 0, which implies v = 0, a contradiction). Thus, λ = ±i.
At this point, for λ = i, we can solve the system i(a+ bi) = c+ di, i(c+ di) = −a− bi,
where v1 = a+bi and v2 = c+di, and similarly for λ = −i. But we have seen a similar
question in class, so it makes sense to make similar guesses for eigenvectors, like
(1, i) and (1,−i). Checking these, we have i(1, i) = (i,−1) = T (1, i), and −i(1,−i) =
(−i,−1) = T (1,−i), so these are respective eigenvectors. �

Alternate (b) Suppose that F = C. Compute all eigenvalues of T . For each eigenvalue, give a
corresponding eigenvector.

Solution. Suppose that v = (v1, v2) is an eigenvector, with eigenvalue λ. We have
(λv1, λv2) = (−v2, v1). Substituting, −v2 = λv1 = λ(λv2), which gives λ2 + 1 = 0 (or
v2 = 0, which implies v = 0, a contradiction). Thus, λ = ±i.
At this point, for λ = i, we can solve the system i(a+ bi) = −c− di, i(c+ di) = a+ bi,
where v1 = a + bi and v2 = c + di, and similarly for λ = −i. But we have seen this
question in class, and have found the eigenvectors (i, 1) and (−i, 1). Checking these,
we have i(i, 1) = (−1, i) = T (i, 1), and −i(−i, 1) = (−1,−i) = T (−i, 1), so these are
respective eigenvectors. �

(c) Find a basis for which the matrixM(T ) associated to T is upper-triangular. If pos-
sible, give a basis for which M(T ) is diagonal; otherwise explain why this is not
possible.

Solution. Neither is possible over R, as this would imply the existence of an eigen-
vector. With respect to the basis

(
(1, i), (1,−i)

)
of C2, we haveM(T ) = [ i 0

0 −i ], which
is both upper triangular and diagonal. �

Alternate (c) Find a basis for which the matrixM(T ) associated to T is upper-triangular. If pos-
sible, give a basis for which M(T ) is diagonal; otherwise explain why this is not
possible.

Solution. Neither is possible over R, as this would imply the existence of an eigen-
vector. With respect to the basis

(
(i, 1), (−i, 1)

)
of C2, we haveM(T ) = [ i 0

0 −i ], which
is both upper triangular and diagonal. �
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3. (a) Suppose V is a finite dimensional vector space, L ∈ End(V ) has dimV distinct eigen-
values, and K ∈ End(V ) has the same eigenvectors as L (but not necessarily the
same eigenvalues). Prove that KL = LK.

Solution. We have seen that eigenvectors belonging to distinct eigenvalues are lin-
early independent, which implies that the eigenvectors of L form an eigenbasis, say
(v1, v2, . . . , vdimV ), with corresponding eigenvalues λj ∈ F. For each j, we also have
K(vj) = κjvj for some κj ∈ F. Thus, KL(vj) = K(L(vj)) = K(λjvj) = λjK(vj) =
λjκjvj. Similarly, LK(vj) = κjλjvj. Hence, KL(vj) = LK(vj) for every vj in the
basis, and so KL = LK. �

(b) Suppose that K,L ∈ End(V ) are such that KL = LK. Prove that Ker(L − λI) is
invariant under K for every λ ∈ F.

Solution. Let v ∈ Ker(L − λI). We want to show that K(v) ∈ Ker(L − λI), in other
words, that (L − λI)(K(v)) = 0. We evaluate (L − λI)(K(v)) = LK(v) − λK(v) =
KL(v) − λK(v) = K(Lv − λv) = K(L − λI)(v) = K(0) = 0. Hence, Ker(L − λI) is
K-invariant. �
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4. The Fibonacci sequence f1, f2, . . . is the sequence of integers defined by f1 = 1, f2 = 1, and
fn = fn−1 + fn−2 for n ≥ 3. Define a linear operator F ∈ End(R2) by F (x, y) = (y, y + x).

Alternate 4. The Lucas sequence `1, `2, . . . is the sequence of integers defined by `1 = 2, `2 = 1, and
`n = `n−1 + `n−2 for n ≥ 3. Define a linear operator L ∈ End(R2) by L(x, y) = (y, y + x).

(a) Compute f5. Evaluate F 4(0, 1). Explain the relationship between f5 and F 4(0, 1).

Solution. Computing terms in the sequence gives f3 = f2 + f1 = 1 + 1 = 2, f4 =
f3+ f2 = 2+1 = 3, and f5 = f4+ f3 = 3+2 = 5. On the other hand, F (0, 1) = (1, 1),
F 2(0, 1) = F (1, 1) = (1, 2), F 3(0, 1) = F (1, 2) = (2, 3), and F 4(0, 1) = F (2, 3) = (3, 5).
Hence, f5 is the second coordinate of F 4(0, 1). �

Alternate (a) Compute `5. Evaluate L4(−1, 2). Explain the relationship between `5 and L4(−1, 2).

Solution. Computing terms in the sequence gives `3 = `2 + `1 = 1 + 2 = 3, `4 =
`3+ `2 = 3+1 = 4, and `5 = `4+ `3 = 4+3 = 7. On the other hand, L(−1, 2) = (2, 1),
L2(−1, 2) = L(2, 1) = (1, 3), L3(−1, 2) = L(1, 3) = (3, 4), and L4(−1, 2) = L(3, 4) =
(4, 7). Hence, `5 is the second coordinate of L4(0, 1). �

(b) Prove by induction that F n(0, 1) = (fn, fn+1) for every n ∈ N∗.

Solution. If n = 1, then F 1(0, 1) = F (0, 1) = (1, 1) = (f1, f2), which proves the
base case. For the inductive step, suppose that F n−1(0, 1) = (fn−1, fn). Thus,
F n(0, 1) = F (F n−1(0, 1)) = F (fn−1, fn) = (fn, fn + fn−1) = (fn, fn+1) by definition of
the Fibonacci sequence, as desired. �

Alternate (b) Prove by induction that Ln(−1, 2) = (`n, `n+1) for every n ∈ N∗.

Solution. If n = 1, then L1(−1, 2) = L(−1, 2) = (2, 1) = (`1, `2), which proves the
base case. For the inductive step, suppose that Ln−1(−1, 2) = (`n−1, `n). Thus,
Ln(−1, 2) = L(Ln−1(−1, 2)) = L(`n−1, `n) = (`n, `n + `n−1) = (`n, `n+1) by defini-
tion of the Lucas sequence, as desired. �

(c) Determine the eigenvalues of F .

Solution. Let F (x, y) = λ(x, y), or equivalently (y, y + x) = (λx, λy). Substituting
y = λx into y + x = λy, we have λx+ x = λ2x, which gives λ2 − λ− 1 = 0 or x = 0.

If x = 0, then y = 0, a contradiction. Thus, λ =
1±

√
1− 4(1)(−1)
2(1)

=
1±
√
5

2
. The

value
1 +
√
5

2
is known as the Golden Ratio. �
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5. Let V and W be F-vector spaces and let S ∈ Hom(V,W ).
(a) Suppose that S is injective and (v1, v2, . . . , vn) is linearly independent in V . Show

that (Sv1, Sv2, . . . , Svn) is linearly independent in W .

Solution. Suppose that a1Sv1 + a2Sv2 + · · · + anSvn = 0. We then have 0 = a1Sv1 +
a2Sv2 + · · · + anSvn = S(a1v1 + a2v2 + · · · + anvn), which implies a1v1 + a2v2 +
· · · + anvn = 0, as S is injective. Because (v1, v2, . . . , vn) is linearly independent,
a1 = a2 = · · · = an = 0, so that (Sv1, Sv2, . . . , Svn) is linearly independent. �

Alternate (a) Suppose that S is surjective and (v1, v2, . . . , vn) spans V . Show that (Sv1, Sv2, . . . , Svn)
spans W .

Solution. Let w ∈ W . Because S is surjective, there exists v ∈ V such that Sv = w.
We can write v = a1v1+a2v2+· · ·+anvn, so that w = Sv = S(a1v1+a2v2+· · ·+anvn) =
a1Sv1+a2Sv2+ · · ·+anSvn, which shows that w is in the span of (Sv1, Sv2, . . . , Svn),
as desired. �

(b) Suppose A,B ∈ End(V ) and B is invertible. If g ∈ F[t] is a polynomial, then show
that g(BAB−1) = Bg(A)B−1.

Solution. We first use induction to prove this for powers g = tn. If n = 0, then
g = 1, so g(BAB−1) = I = BIB−1 (note that A0 = I, by definition). Now sup-
pose that the statement holds for n = k − 1, and let g = tk. Thus, g(BAB−1) =
(BAB−1)k = (BAB−1)k−1(BAB−1) = (BAk−1B−1)(BAB−1) = BAkB−1. This proves
the statement for powers of t.
Continuing with the general case, let g(t) = a0 + a1t + a2t

2 + · · · + ant
n. We have

g(BAB−1) = a0I + a1(BAB
−1) + a2(BAB

−1)2 + · · · + an(BAB
−1)n, which equals

a0BIB
−1 + a1(BAB

−1) + a2(BA
2B−1) + · · ·+ an(BA

nB−1) = B(a0I + a1A+ a2A
2 +

· · ·+ anA
n)B−1 = Bg(A)B−1, as desired. �


