
Solutions #2

1. The transpose AT of an (m× n)-matrix A is obtained from A by interchanging the rows
with the columns; in other words if A = [ai,j] then AT = [aj,i]. A matrix A is symmetric if
AT = A and skew-symmetric if AT = −A.

(a) Prove that the set Wskew of all skew-symmetric (n × n)-matrices is a subspace of
Qn×n.

(b) Let Wsym be the subspace of Qn×n consisting of all symmetric matrices. Prove that
Qn×n = Wsym ⊕Wskew.

Solution.

(a) Since the zero matrix is equal to the negative of its transpose, we have 0 ∈ Wskew

which means that Wskew is nonempty. If A,B ∈ Wskew and c ∈ Q, then we have

(cA+B)T = cAT +BT = c(−A) + (−B) = −(cA+B)

and cA+B ∈ Wskew. Therefore, Wskew is a subspace of Qn×n.
(b) If A ∈ Wskew ∩Wsym, then AT = A = −A which implies that 2A = 0 and A = 0.

Hence, we have Wskew∩Wsym = {0} and the subspaces Wskew, Wsym are independent.
Given B ∈ Qn×n, using (BT)T = B, we obtain the following equations:(

1
2
(B −BT)

)T
= 1

2
(BT −B) = −1

2
(B −BT) , (†)(

1
2
(B +BT)

)T
= 1

2
(BT +B) = 1

2
(B +BT) , (‡)

B = 1
2
(B −BT) + 1

2
(B +BT) . (?)

The equation (†) shows 1
2
(B − BT) ∈ Wskew, (‡) shows 1

2
(B + BT) ∈ Wsym and

(?) establishes that Qn×n = Wskew +Wsym. Since Wskew, Wsym are independent and
Qn×n = Wskew +Wsym, we conclude that Qn×n = Wskew ⊕Wsym. �

2. Prove or give a counterexample to following: if U1 and U2 are finite dimensional sub-
spaces of V , then U1 + U2 is finite dimensional, and dim (U1 + U2) ≤ dimU1 + dimU2.

Solution. We prove the statement. By definition of finite dimensional, there exist finite
lists of vectors (u1, . . . , un) and (v1, . . . , vm) in V such that U1 = span(u1, . . . , un) and U2 =

span(v1, . . . , vm); in fact, we can assume these have already been reduced to bases. It is
straightforward to show that U1 + U2 = spanB, where B = (u1, . . . , un, v1, . . . , vm). Thus,
B is a spanning list for U1 + U2. Because this list can be reduced to a basis, we find that
dim(U1 + U2) ≤ n+m = dimU1 + dimU2. �
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3. Let P := R[t]≤2 be the real vector space of all polynomial functions of degree at most 2
and consider V := RP , the real vector space of all functions from P to R. Determine the
linear independence or dependence of the following lists (f1, f2, f3) in V .

(a) for p ∈ P , let f1(p) := p(0), f2(p) := p(1) and f3(p) := p(2);
(b) for p ∈ P , let f1(p) := p(0), f2(p) :=

∫ 1

0
p(t) dt and f3(p) :=

∫ 1

−1
p(t) dt.

Solution. To show that (f1, f2, f3) is linearly independent, it suffices to find polynomials

p1, p2, p3 ∈ P such that fi(pj) =

1 i = j

0 i 6= j
for all 1 ≤ i ≤ 3 and all 1 ≤ j ≤ 3. Indeed,

given such polynomials, a linear relation a1f1 + a2f2 + a3f3 = 0 with a1, a2, a3 ∈ R yields

0 = a1f1(p1) + a2f2(p1) + a3f3(p1) = a1

0 = a1f1(p2) + a2f2(p2) + a3f3(p2) = a2

0 = a1f1(p3) + a2f2(p3) + a3f3(p3) = a3

which means a1 = a2 = a3 = 0 and (f1, f2, f3) is linearly independent.

(a) If p1(t) = 1
2
(t− 1)(t− 2), p2(t) = t(2− t), and p3(t) =

1
2
t(t− 1), then we have

f1(p1) = p1(0) =
1
2
(0− 1)(0− 2) = 1 f1(p2) = p2(0) =

1
2
(0)(2− 0) = 0

f1(p3) = p3(0) =
1
2
(0)(0− 1) = 0 f2(p1) = p1(1) =

1
2
(1− 1)(1− 2) = 0

f2(p2) = p2(1) = (1)(2− 1) = 1 f2(p3) = p3(1) =
1
2
(1)(1− 1) = 0

f3(p1) = p1(2) =
1
2
(2− 1)(2− 2) = 0 f3(p2) = p2(2) = 2(2− 2) = 0

f3(p3) = p3(2) =
1
2
(2)(2− 1) = 1 .

(b) If p1(t) = −3t2 + 1, p2(t) = 2t, and p3(t) =
3
2
t2 − t, then we have

f1(p1) = p1(0) = 1 f1(p2) = p2(0) = 0

f1(p3) = p3(0) = 0 f2(p1) =
∫ 1

0
−3t2 + 1 dt = [−t3 + t]10 = 0

f2(p2) =
∫ 1

0
2t dt = [t2]10 = 1 f2(p3) =

∫ 1

0
3
2
t2 − t dt = [1

2
t3 − 1

2
t2]10 = 0

f3(p1) =
∫ 1

−1
−3t2 + 1 dt = [−t3 + t]1−1 = 0 f3(p2) =

∫ 1

−1
2t dt = [t2]1−1 = 0

f3(p3) =
∫ 1

−1
3
2
t2 − t dt = [1

2
t3 − 1

2
t2]1−1 = 1 .

Therefore, both lists (f1, f2, f3) in V are linearly independent. �


