
Solutions #4

1. Let L : C2([0, 1])→ C([0, 1]) be defined by Lf = f ′′.

(a) Show that L has no left inverses.
(b) Show that the operators G1 and G2, defined as follows, are right inverses:

(G1f)(x) =

∫ x

0

(x− t)f(t) dt ,

(G2f)(x) =

∫ 1

0

g(x, y)f(y) dy , where g(x, y) =

x(y − 1) x < y

y(x− 1) y ≤ x .

(c) Let U1 be the set of functions in C2([0, 1]) satisfying f(0) = f ′(0) = 0. Show that
G1 = L−1 if the domain of L is restricted to U1.

(d) Let U2 be the set of functions in C2([0, 1]) satisfying f(0) = f(1) = 0. Show that
G2 = L−1 if the domain of L is restricted to U2.

Solution.

(a) Suppose L has a left inverse. By definition, this means that there exists H : C([0, 1])→
C2([0, 1]) such that HL = I. In particular, if Lf = Lg then applying H to this equa-
tion yields f = If = HLf = HLg = Ig = g which implies that L is injective.
However, L(f) = f ′′ = L(f + 1) shows that L is not injective. Therefore, L has no
left inverse.

(b) Since

(LG1f)(x) =
d2

dx2

∫ x

0

(x− t)f(t) dt =
d

dx

(
d

dx

∫ x

0

(x− t)f(t) dt

)
=

d

dx

(
(x− x)f(x) +

∫ x

0

[
d

dx
(x− t)

]
f(t) dt

)
=

d

dx

(∫ x

0

f(t) dt

)
= f(x) ,

we see that LG1 = I and G1 is a right inverse of L. Similarly, because

(LG2f)(x) =
d2

dx2

∫ 1

0

g(x, y)f(y) dy =
d2

dx2

(∫ x

0

y(x− 1)f(y) dy +

∫ 1

x

x(y − 1)f(y) dy

)
=

d2

dx2

(
(x− 1)

∫ x

0

yf(y) dy + x

∫ 1

x

(y − 1)f(y) dy

)
=

d

dx

(∫ x

0

yf(y) dy + (x− 1)xf(x) +

∫ 1

x

(y − 1)f(y) dy − x(x− 1)f(x)

)
=

d

dx

(∫ 1

0

yf(y) dy +

∫ x

1

f(y) dy

)
= f(x) ,

it follows that LG2 = I and G2 is a right inverse of L.
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(c) If f ∈ U1, then we have

(G1Lf)(x) =

∫ x

0

(x− t)f ′′(t) dt =
[
(x− t)f ′(t)

]x
0
−
∫ x

0

f ′(t)(−1) dt

= (x− x)f ′(x) + (x− 0)f ′(0) +
[
f(t)

]x
0
= f(x)− f(0) = f(x) ,

so G1L = I. Combining this with part (b), we see that G1 = L−1 if the domain of L
is restricted to U1.

(d) If f ∈ U2, then we have

(G2Lf)(x) =

∫ 1

0

g(x, y)f ′′(y) dy =

∫ x

0

y(x− 1)f ′′(y) dy +

∫ 1

x

x(y − 1)f ′′(y) dy

= (x− 1)

∫ x

0

yf ′′(y) dy + x

∫ 1

x

(y − 1)f ′′(y) dy

= (x− 1)

{[
yf ′(y)

]x
0
−
∫ x

0

f ′(y) dy

}
+ x

{[
(y − 1)f ′(y)

]1
x
−
∫ 1

x

f ′(y) dy

}
= (x− 1)xf ′(x)− (x− 1)

[
f(y)

]x
0
− x(x− 1)f ′(x)− x

[
f(y)

]1
x

= −(x− 1)f(x) + (x− 1)f(0)− xf(1) + xf(x) = f(x) ,

so G2L = I. Combining this with part (b), we see that G2 = L−1 if the domain of L
is restricted to U2. �

2. Let V be a finite dimensional vector space and consider S, T ∈ End(V ).

(a) Show that ST is invertible if and only if both S and T are invertible.
(b) Prove that ST = I if and only if TS = I.
(c) Give an example illustrating that both (a) and (b) are false over an infinite dimen-

sional vector space.

Solution.

(a) =⇒ Suppose ST is invertible. Hence, ST is bijective which means KerST = {0}
and ImST = V . Since ImST ⊆ ImS and KerT ⊆ KerST , we deduce that
ImS = V and KerT = {0}. For a linear operator on a finite-dimensional vec-
tor space, being invertible is equivalent to being injective or being surjective.
Therefore, S and T are invertible.

⇐= If S and T are invertible, then we have (T−1S−1)(ST ) = T−1T = I and
(ST )(T−1S−1) = SS−1 = I. Therefore, the inverse of ST is T−1S−1.

(b) By symmetry, it suffices to prove that ST = I implies that TS = I. If ST = I,
then KerT ⊆ KerST = {0} and T is injective. For a linear operator on a finite-
dimensional vector space, being invertible is equivalent to being injective. Hence,
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T is invertible and we have

TS = TS(I) = TS(TT−1) = T (ST )T−1 = TIT−1 = TT−1 = I .

(c) Suppose V = R[t] and let S, T ∈ End(V ) be defined by (Sf)(t) = f ′(t) and
(Tf)(t) =

∫ t

0
f(y) dy for f ∈ V . The fundamental theorem of calculus shows

that

(STf)(t) =
d

dt

∫ t

0

f(y) dy = f(t) and (TSf)(t) =

∫ t

0

f ′(y) dy = f(t)− f(0) ,

which implies ST = I and TS 6= I. In particular, over an infinite dimensional
vector space, both parts (a) and (b) are false. �

3. Define J : R[t]≤2 → R[t]≤2 by (Jp)(t) =
1

2

∫ 1

−1
(6 + 9st− 15s2t2)p(s) ds.

(a) Find the matrixM(J) with respect to the basis (1, t, t2).
(b) Find a basis for Ker J and Im J .
(c) Show that J−1 exists and find an expression for J−1(a+ bt+ ct2).
(d) Find p such that J(p) = (1 + t)2.
(e) Find q such that J2(q) = t2.

Solution.

(a) Since we have

(J1)(t) =
1

2

∫ 1

−1
(6 + 9st− 15s2t2) ds = 1

2

[
6s+ (9/2)s2t− 5s3t2

]1
−1 = 6− 5t2

(Jt)(t) =
1

2

∫ 1

−1
(6 + 9st− 15s2t2)s ds = 1

2

[
3s2 + 3s3t− 15

4
s4t2

]1
−1 = 3t

(Jt2)(t) =
1

2

∫ 1

−1
(6 + 9st− 15s2t2)s2 ds = 1

2

[
2s3 + (9/4)s4t− 3s5t2

]1
−1 = 2− 3t2 ,

it follows that

M(J) =

 6 0 2

0 3 0

−5 0 −3

 .

(b) Row-reducingM(J) yields 6 0 2

0 3 0

−5 0 −3

 ∼
 1 0 1

3

0 1 0

0 0 −4
3

 ∼
 1 0 0

0 1 0

0 0 1

 .
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Hence, KerM(J) = {0}, so Ker J = {0} and J is injective. Because an injective
endomorphism on a finite-dimensional vector space is invertible, we see that Im J =

R[t]≤2.
(c) Part (b) shows J is invertible. To compute J−1, we first compute M(J)−1. The

matrix of minors of

 6 0 2

0 3 0

−5 0 −3

 equals

−9 0 15

0 −8 0

−6 0 18

, which also happens to be

the cofactor matrix. The adjugate matrix is the transpose

−9 0 −6
0 −8 0

15 0 18

. Now we

have −9 0 −6
0 −8 0

15 0 18


 6 0 2

0 3 0

−5 0 −3

 =

−24 0 0

0 −24 0

0 0 −24

 ,

so the inverse isM(J)−1 = (1/24)

 9 0 6

0 8 0

−15 0 −18


Since

M(J)−1

 a

b

c

 =
1

24

 9 0 6

0 8 0

−15 0 −18


 a

b

c

 =
1

24

 9a+ 6c

8b

−15a− 18c

 ,

it follows that J−1(a+ bt+ ct2) = 1
24

(
(9a+ 6c) + (8b)t+ (−15a− 18c)t2

)
.

(d) Part (c) yields J−1
(
(1+ t)2

)
= J−1(1+2t+ t2) = 1

24
(15+8t− 33t2) so J( 1

24
(15+8t−

33t2)) = (1 + t)2.
(e) Using part (c) twice, we obtain J−1(t2) = 4 − 12t2 and J−1

(
4 − 12t2

)
= −3

2
+ 13

2
t2.

Hence, J2
(
−3

2
+ 13

2
t2
)
= t2. �


