

Solutions #4

1. Let $L: C^2([0, 1]) \rightarrow C([0, 1])$ be defined by $Lf = f''$.

(a) Show that L has no left inverses.

(b) Show that the operators G_1 and G_2 , defined as follows, are right inverses:

$$(G_1 f)(x) = \int_0^x (x-t)f(t) dt,$$

$$(G_2 f)(x) = \int_0^1 g(x, y)f(y) dy, \quad \text{where } g(x, y) = \begin{cases} x(y-1) & x < y \\ y(x-1) & y \leq x. \end{cases}$$

(c) Let U_1 be the set of functions in $C^2([0, 1])$ satisfying $f(0) = f'(0) = 0$. Show that $G_1 = L^{-1}$ if the domain of L is restricted to U_1 .

(d) Let U_2 be the set of functions in $C^2([0, 1])$ satisfying $f(0) = f(1) = 0$. Show that $G_2 = L^{-1}$ if the domain of L is restricted to U_2 .

Solution.

(a) Suppose L has a left inverse. By definition, this means that there exists $H: C([0, 1]) \rightarrow C^2([0, 1])$ such that $HL = I$. In particular, if $Lf = Lg$ then applying H to this equation yields $f = If = HLf = HLg = Ig = g$ which implies that L is injective. However, $L(f) = f'' = L(f + 1)$ shows that L is not injective. Therefore, L has no left inverse.

(b) Since

$$\begin{aligned} (LG_1 f)(x) &= \frac{d^2}{dx^2} \int_0^x (x-t)f(t) dt = \frac{d}{dx} \left(\frac{d}{dx} \int_0^x (x-t)f(t) dt \right) \\ &= \frac{d}{dx} \left((x-x)f(x) + \int_0^x \left[\frac{d}{dx}(x-t) \right] f(t) dt \right) = \frac{d}{dx} \left(\int_0^x f(t) dt \right) = f(x), \end{aligned}$$

we see that $LG_1 = I$ and G_1 is a right inverse of L . Similarly, because

$$\begin{aligned} (LG_2 f)(x) &= \frac{d^2}{dx^2} \int_0^1 g(x, y)f(y) dy = \frac{d^2}{dx^2} \left(\int_0^x y(x-1)f(y) dy + \int_x^1 x(y-1)f(y) dy \right) \\ &= \frac{d^2}{dx^2} \left((x-1) \int_0^x yf(y) dy + x \int_x^1 (y-1)f(y) dy \right) \\ &= \frac{d}{dx} \left(\int_0^x yf(y) dy + (x-1)xf(x) + \int_x^1 (y-1)f(y) dy - x(x-1)f(x) \right) \\ &= \frac{d}{dx} \left(\int_0^1 yf(y) dy + \int_1^x f(y) dy \right) = f(x), \end{aligned}$$

it follows that $LG_2 = I$ and G_2 is a right inverse of L .

(c) If $f \in U_1$, then we have

$$\begin{aligned}(G_1 L f)(x) &= \int_0^x (x-t) f''(t) dt = [(x-t)f'(t)]_0^x - \int_0^x f'(t)(-1) dt \\ &= (x-x)f'(x) + (x-0)f'(0) + [f(t)]_0^x = f(x) - f(0) = f(x),\end{aligned}$$

so $G_1 L = I$. Combining this with part (b), we see that $G_1 = L^{-1}$ if the domain of L is restricted to U_1 .

(d) If $f \in U_2$, then we have

$$\begin{aligned}(G_2 L f)(x) &= \int_0^1 g(x,y) f''(y) dy = \int_0^x y(x-1) f''(y) dy + \int_x^1 x(y-1) f''(y) dy \\ &= (x-1) \int_0^x y f''(y) dy + x \int_x^1 (y-1) f''(y) dy \\ &= (x-1) \left\{ [y f'(y)]_0^x - \int_0^x f'(y) dy \right\} + x \left\{ [(y-1) f'(y)]_x^1 - \int_x^1 f'(y) dy \right\} \\ &= (x-1) x f'(x) - (x-1) [f(y)]_0^x - x(x-1) f'(x) - x [f(y)]_x^1 \\ &= -(x-1) f(x) + (x-1) f(0) - x f(1) + x f(x) = f(x),\end{aligned}$$

so $G_2 L = I$. Combining this with part (b), we see that $G_2 = L^{-1}$ if the domain of L is restricted to U_2 . \square

2. Let V be a finite dimensional vector space and consider $S, T \in \text{End}(V)$.

(a) Show that ST is invertible if and only if both S and T are invertible.

(b) Prove that $ST = I$ if and only if $TS = I$.

(c) Give an example illustrating that both (a) and (b) are false over an infinite dimensional vector space.

Solution.

(a) \implies Suppose ST is invertible. Hence, ST is bijective which means $\text{Ker } ST = \{0\}$ and $\text{Im } ST = V$. Since $\text{Im } ST \subseteq \text{Im } S$ and $\text{Ker } T \subseteq \text{Ker } ST$, we deduce that $\text{Im } S = V$ and $\text{Ker } T = \{0\}$. For a linear operator on a finite-dimensional vector space, being invertible is equivalent to being injective or being surjective. Therefore, S and T are invertible.

\impliedby If S and T are invertible, then we have $(T^{-1}S^{-1})(ST) = T^{-1}T = I$ and $(ST)(T^{-1}S^{-1}) = SS^{-1} = I$. Therefore, the inverse of ST is $T^{-1}S^{-1}$.

(b) By symmetry, it suffices to prove that $ST = I$ implies that $TS = I$. If $ST = I$, then $\text{Ker } T \subseteq \text{Ker } ST = \{0\}$ and T is injective. For a linear operator on a finite-dimensional vector space, being invertible is equivalent to being injective. Hence,

T is invertible and we have

$$TS = TS(I) = TS(TT^{-1}) = T(ST)T^{-1} = TIT^{-1} = TT^{-1} = I.$$

(c) Suppose $V = \mathbb{R}[t]$ and let $S, T \in \text{End}(V)$ be defined by $(Sf)(t) = f'(t)$ and $(Tf)(t) = \int_0^t f(y) dy$ for $f \in V$. The fundamental theorem of calculus shows that

$$(STf)(t) = \frac{d}{dt} \int_0^t f(y) dy = f(t) \quad \text{and} \quad (TSf)(t) = \int_0^t f'(y) dy = f(t) - f(0),$$

which implies $ST = I$ and $TS \neq I$. In particular, over an infinite dimensional vector space, both parts (a) and (b) are false. \square

3. Define $J: \mathbb{R}[t]_{\leq 2} \rightarrow \mathbb{R}[t]_{\leq 2}$ by $(Jp)(t) = \frac{1}{2} \int_{-1}^1 (6 + 9st - 15s^2t^2)p(s) ds$.

(a) Find the matrix $\mathcal{M}(J)$ with respect to the basis $(1, t, t^2)$.
 (b) Find a basis for $\text{Ker } J$ and $\text{Im } J$.
 (c) Show that J^{-1} exists and find an expression for $J^{-1}(a + bt + ct^2)$.
 (d) Find p such that $J(p) = (1 + t)^2$.
 (e) Find q such that $J^2(q) = t^2$.

Solution.

(a) Since we have

$$\begin{aligned} (J1)(t) &= \frac{1}{2} \int_{-1}^1 (6 + 9st - 15s^2t^2) ds = \frac{1}{2} [6s + (9/2)s^2t - 5s^3t^2]_{-1}^1 = 6 - 5t^2 \\ (Jt)(t) &= \frac{1}{2} \int_{-1}^1 (6 + 9st - 15s^2t^2)s ds = \frac{1}{2} [3s^2 + 3s^3t - \frac{15}{4}s^4t^2]_{-1}^1 = 3t \\ (Jt^2)(t) &= \frac{1}{2} \int_{-1}^1 (6 + 9st - 15s^2t^2)s^2 ds = \frac{1}{2} [2s^3 + (9/4)s^4t - 3s^5t^2]_{-1}^1 = 2 - 3t^2, \end{aligned}$$

it follows that

$$\mathcal{M}(J) = \begin{bmatrix} 6 & 0 & 2 \\ 0 & 3 & 0 \\ -5 & 0 & -3 \end{bmatrix}.$$

(b) Row-reducing $\mathcal{M}(J)$ yields

$$\begin{bmatrix} 6 & 0 & 2 \\ 0 & 3 & 0 \\ -5 & 0 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{3} \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{4}{3} \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Hence, $\text{Ker } \mathcal{M}(J) = \{0\}$, so $\text{Ker } J = \{0\}$ and J is injective. Because an injective endomorphism on a finite-dimensional vector space is invertible, we see that $\text{Im } J = \mathbb{R}[t]_{\leq 2}$.

(c) Part (b) shows J is invertible. To compute J^{-1} , we first compute $\mathcal{M}(J)^{-1}$. The matrix of minors of $\begin{bmatrix} 6 & 0 & 2 \\ 0 & 3 & 0 \\ -5 & 0 & -3 \end{bmatrix}$ equals $\begin{bmatrix} -9 & 0 & 15 \\ 0 & -8 & 0 \\ -6 & 0 & 18 \end{bmatrix}$, which also happens to be the cofactor matrix. The adjugate matrix is the transpose $\begin{bmatrix} -9 & 0 & -6 \\ 0 & -8 & 0 \\ 15 & 0 & 18 \end{bmatrix}$. Now we have

$$\begin{bmatrix} -9 & 0 & -6 \\ 0 & -8 & 0 \\ 15 & 0 & 18 \end{bmatrix} \begin{bmatrix} 6 & 0 & 2 \\ 0 & 3 & 0 \\ -5 & 0 & -3 \end{bmatrix} = \begin{bmatrix} -24 & 0 & 0 \\ 0 & -24 & 0 \\ 0 & 0 & -24 \end{bmatrix},$$

$$\text{so the inverse is } \mathcal{M}(J)^{-1} = (1/24) \begin{bmatrix} 9 & 0 & 6 \\ 0 & 8 & 0 \\ -15 & 0 & -18 \end{bmatrix}$$

Since

$$\mathcal{M}(J)^{-1} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{24} \begin{bmatrix} 9 & 0 & 6 \\ 0 & 8 & 0 \\ -15 & 0 & -18 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{24} \begin{bmatrix} 9a + 6c \\ 8b \\ -15a - 18c \end{bmatrix},$$

it follows that $J^{-1}(a + bt + ct^2) = \frac{1}{24}((9a + 6c) + (8b)t + (-15a - 18c)t^2)$.

(d) Part (c) yields $J^{-1}((1+t)^2) = J^{-1}(1+2t+t^2) = \frac{1}{24}(15+8t-33t^2)$ so $J(\frac{1}{24}(15+8t-33t^2)) = (1+t)^2$.

(e) Using part (c) twice, we obtain $J^{-1}(t^2) = 4 - 12t^2$ and $J^{-1}(4 - 12t^2) = -\frac{3}{2} + \frac{13}{2}t^2$. Hence, $J^2(-\frac{3}{2} + \frac{13}{2}t^2) = t^2$. \square