Solutions #4

1. Let L: C%([0,1]) — C([0,1]) be defined by Lf = f".

(a) Show that L has no left inverses.
(b) Show that the operators GG; and G5, defined as follows, are right inverses:

(Guf)(x) = / w0 dt.

z(y—1) xz<y

y(x—1) y<uz

(G2f)(z) = /0 9(z,y) f(y) dy, where g(z,y) = {

(c) Let U; be the set of functions in C?([0, 1]) satisfying f(0) = f/(0) = 0. Show that
G, = L' if the domain of L is restricted to U;.

(d) Let U, be the set of functions in C?([0, 1]) satisfying f(0) = f(1) = 0. Show that
G4 = L~ if the domain of L is restricted to Us,.

Solution.

(a) Suppose L has a left inverse. By definition, this means that there exists H: C(|0, 1]) —
C?([0,1]) such that HL = I. In particular, if Lf = Lg then applying H to this equa-
tion yields f = If = HLf = HLg = Ig = g which implies that L is injective.
However, L(f) = f” = L(f + 1) shows that L is not injective. Therefore, L has no
left inverse.

(b) Since

2

weino) =5 [0 a=1 (1 [[w-nroa)

-z ((m—x)f(a:)—l—/ow {%(:p—t)} £(0) dt) 2 </Oxf<t) dt) = (=),

we see that LG, = I and G is a right inverse of L. Similarly, because

2 d2

(1621w = s [ st dy =2 ([ ot =050+ [ oty 50 a0
i
&

- ((zv -0 [Cutdyee - D) dy)
-2 ([ v drs - ver)+ [ =010 dy -2t~ 150))

_d (/Olyf(y) w+ [ s dy) — /@),

it follows that LG5 = I and G, is a right inverse of L.
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(c) If f € U, then we have
GL@ = [[@- 00 de= [ —0rl;- | 1
= (v — ) f'(x) + (x = 0)f(0) + [f(t)} f(z) = f(0) = f(x),

so G1L = I. Combining this with part (b), we see that G; = L~! if the domain of L

is restricted to Uj;.
(d) If f € Us,, then we have

(GoLf)(x) = / oo, 9) 1" (y) dy = / e — )" (y) dy + / £y — 1) f"(y) dy
— (1) / ) dy + [ =05 dy

:<x—1>{[yf /f dy}+:c{[<y—1 /f dy}

= (&= Daf'(z) = (z = [f(y)], — 2@ - 1)f(x) - I[f(y) v
—(z =) f(2) + (@ = D f0) =z f(1) + zf(x) = f(x),

so G, L = I. Combining this with part (b), we see that G, = L~! if the domain of L
is restricted to Us. O

2. Let V be a finite dimensional vector space and consider S, T € End(V).

(a) Show that ST is invertible if and only if both S and T are invertible.

(b) Prove that ST = [ ifand only if 'S = I.

(¢) Give an example illustrating that both (a) and (b) are false over an infinite dimen-
sional vector space.

Solution.

(a) = Suppose ST is invertible. Hence, ST is bijective which means Ker ST = {0}
and Im ST = V. Since Im ST C Im S and KerT' C Ker ST, we deduce that
ImS =V and Ker T' = {0}. For a linear operator on a finite-dimensional vec-
tor space, being invertible is equivalent to being injective or being surjective.
Therefore, S and T are invertible.
<= If S and T are invertible, then we have (T~'S')(ST) = T'T = I and
(ST)(T~*S~') = SS~! = I. Therefore, the inverse of ST is T~'S~.
(b) By symmetry, it suffices to prove that ST = I implies that 7S = [. If ST = I,
then KerT' C Ker ST = {0} and T is injective. For a linear operator on a finite-
dimensional vector space, being invertible is equivalent to being injective. Hence,
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T is invertible and we have
TS = TS(I) = TS(TT’l) = T(ST)T’1 =TIT '=TT'=1.

(c) Suppose V' = RJ[t] and let S, T € End(V) be defined by (Sf)(t) = f'(t) and
(THt) = fot f(y) dy for f € V. The fundamental theorem of calculus shows

that

(ST)(1) = & / e and  (TSf)(t / F(y) dy = £(t) — £(0),
which implies ST = I and T'S # [. In particular, over an infinite dimensional
vector space, both parts (a) and (b) are false. O

1
3. Define J: R[t|<s — R[t]<2 by (Jp)(t) = %/ (6 + 9st — 155°t*)p(s) ds.

1
(a) Find the matrix M(J) with respect to the basis (1, ¢, t?).
(b) Find a basis for Ker J and Im J.
(c) Show that J~! exists and find an expression for J~!(a + bt + ct?).
(d) Find p such that J(p) = (1 + ).
(e) Find ¢ such that J?(q) = ¢*.

Solution.
(a) Since we have

1 [t 1
(J1)(t) = 5/ (6 + 9st — 155°t%) ds = 3[6s + (9/2)s*t —5s*t*] | =6 — 5t°

-1

1 1
(Jt)(t) = 5/ (6 4 9st — 15s*t%)s ds = $[3s* + 3s°t — %34752]1 — 3t

1 -1
1 1
(JE)(t) = 5/ (6 + 9st — 155%1%)s? ds = 1[25° + (9/4)s't — 35%%] L, =2 — 312,
-1

it follows that

6 0 2
MUI)=] 03 o0
-5 0 =3
(b) Row-reducing M (J) yields
6 0 2 10 % 1 00
0 3 0| ~1]01 Ol ~[0 10
-5 0 -3 00 —3 001
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Hence, Ker M(J) = {0}, so KerJ = {0} and J is injective. Because an injective
endomorphism on a finite-dimensional vector space is invertible, we see that Im J =

R[t]<2.
(c) Part (b) shows J is invertible. To compute J~!, we first compute M(J)~!. The
6 0 2 -9 0 15
matrix of minorsof | 0 3 0 | equals | 0 —8 0 |, which also happens to be
-5 0 =3 -6 0 18
-9 0 -6
the cofactor matrix. The adjugate matrix is the transpose | 0 —8 0 |. Now we
15 0 18
have
-9 0 -6 6 0 2 -24 0 0
0 -8 0 0 3 0|=|0 —-24 0|,
15 0 18 -5 0 =3 0 0 —-24
9 0 6
so the inverse is M(J) ' =(1/24) | 0 8 0
—-15 0 —18
Since
a ] 9 0 9a + 6¢
MWDo | = o 0 8 8b |,
c —15 0 —15a — 18¢

it follows that J~!(a + bt + ct*) = % ((9a + 6¢) + (8b —15a — 180)1&2)

(d) Part (c) yields J 7' ((1+¢)?) = J~ 1(1+2t+t2) = i4(15+8t—33t2) 50 J (55 (15+ 8t —
33t?)) = (1 +t)2

(e) Using part (c) twice, we obtain J*(¢?) = 4 — 12¢* and J~'(4 — 12¢%) = —2 + 1¢2,
Hence, J2(—3 + 1¢2) = ¢2. O



