
Solutions #5

1. Suppose that a0, . . . , am are distinct elements in F and that b0, . . . , bm are elements in F.
Prove that there exists a unique polynomial p ∈ F[t]≤m such that p(aj) = bj for 0 ≤ j ≤ m.

Solution. Consider T ∈ Hom(F[t]≤m,Fm+1) defined by T
(
p(t)

)
=
(
p(a0), . . . , p(am)

)
. If T is

injective then at most one polynomial p satisfies the required condition. Moreover, if T is
surjective, then at least one polynomial p satisfies the required condition. Thus, it suffices
to show that T is bijective.

Suppose q ∈ KerT . Since q(a0) = q(a1) = · · · = q(am) = 0, q is a polynomial of degree
at most m with at least m + 1 distinct roots which implies that q = 0. Hence, KerT = {0}
and T is injective.

Since ImT ⊆ Fm+1, the dimension formula gives

m+ 1 = dimF[t]≤m = dimKerT + dim ImT = 0 + dim ImT ≤ dimFm+1 = m+ 1 .

Hence, ImT = Fm+1 and T is surjective. �

Remark. Surjectivity of T can also be established by giving an explicit construction. For
example, T sends the Lagrange polynomials

fj(t) =
(t− a0) · · · (t− aj−1)(t− aj+1) · · · (t− am)

(aj − a0) · · · (aj − aj−1)(aj − aj+1) · · · (aj − am)
=

n∏
k=0
k 6=j

t− ak
aj − ak

∈ F[t]≤m

to the standard basis of Fm+1.

Alternative Solution. As in the first solution, it suffices to show that T is invertible. With
respect to the monomial basis on F[t]≤m and the standard basis on Fm+1, the matrix asso-
ciated to T is

M(T ) =


1 a0 a20 · · · am0
1 a1 a21 · · · am1
...

...
... . . . ...

1 am a2m · · · amm

 ;

this is called the Vandermonde matrix. To show that T is invertible, it suffices to prove that
detM(T ) 6= 0. To accomplish this, we claim that

V (a0, . . . , am) = det


1 a0 a20 · · · am0
1 a1 a21 · · · am1
...

...
... . . . ...

1 am a2m · · · amm

 =
∏
i<j

(aj − ai) .
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We proceed by induction on m. The case m = 0 is trivial. Assume m > 0. For each k ≥ 2,
we subtract from the kth column the (k − 1)th column multiplied by a0; the value of the
determinant is unaltered so

V (a0, . . . , am) = det


1 0 0 · · · 0

1 a1 − a0 a1(a1 − a0) · · · am−11 (a1 − a0)

1 a2 − a0 a2(a2 − a0) · · · am−12 (a2 − a0)
...

...
... . . . ...

1 am − a0 am(am − a0) · · · am−1m (am − a0)

 .

Expanding along the first row and taking out the factor of (ak − a0) from the kth row, we

have V (a0, . . . , am) =
( m∏
j=1

(aj − a0)
)
V (a1, . . . , am) and the induction hypothesis establishes

the claim. Since a0, . . . , am are distinct elements in F, we conclude that detM(T ) 6= 0 and
T is invertible. �

2. Consider T ∈ Hom(R[x]≤2,R[x]≤2) defined by (Tf)(x) =
∫ 1

−1(x − y)2f(y) dy − 2f(0)x2

for all f ∈ R[x]≤2. Find all eigenvalues and eigenvectors for T .

Solution. Fix (1, x, x2) as a basis for R[x]≤2. Since

(T1)(x) =

∫ 1

−1
(x− y)2(1) dy − 2(1)x2 =

∫ 1

−1
x2 − 2xy + y2 dy − 2x2

=
[
x2y − xy2 + 1

3
y3
]1
−1 − 2x2 = 2

3

(Tx)(x) =

∫ 1

−1
(x− y)2(y) dy − 2(0)x2 =

∫ 1

−1
x2y − 2xy2 + y3 dy

=
[
1
2
x2y2 − 2

3
xy3 + 1

4
y4
]1
−1 = −

4
3
x

(Tx2)(x) =

∫ 1

−1
(x− y)2(y2) dy − 2(0)x2 =

∫ 1

−1
x2y2 − 2xy3 + y4 dy

=
[
1
3
x2y3 − 1

2
xy4 + 1

5
y5
]1
−1 =

2
5
+ 2

3
x2 ,

we have M(T ) =

[
2/3 0 2/5
0 −4/3 0
0 0 2/3

]
. Since this matrix is upper-triangular, it follows that the

eigenvalues for T are the diagonal entries, namely 2/3 and −4/3. Moreover, row-reduction
yields

M
(
2
3
I − T

)
=
[
0 0 −2/5
0 2 0
0 0 0

]
∼
[
0 1 0
0 0 1
0 0 0

]
M
(
−4

3
I − T

)
=
[ −2 0 −2/5

0 0 0
0 0 −2

]
∼
[
1 0 0
0 0 1
0 0 0

]
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we see that the nonzero vectors in Ker
([

0 1 0
0 0 1
0 0 0

])
= span

([ 1
0
0

])
are the eigenvectors of

M(T ) corresponding to 2/3 and the nonzero vectors in Ker
([

1 0 0
0 0 1
0 0 0

])
= span

([ 0
1
0

])
are the

eigenvectors of M(T ) corresponding to −4/3. Therefore, the nonzero vectors in span(1)

are the eigenvectors of T corresponding to 2/3 and the nonzero vectors in span(x) are the
eigenvectors of T corresponding to −4/3. �

3. Suppose T ∈ End(Fn) satisfies T (x1, . . . , xn) = (x1+ · · ·+xn, . . . , x1+ · · ·+xn). Find all
eigenvalues and eigenvectors of T .

Solution. Let (e1, . . . , en) be the standard basis for Fn; specifically, ei is the column vector
with 1 in the ith spot and zero elsewhere. Set v1 = e1 + · · · + en and, for 2 ≤ k ≤ n,
set vk := e1 − ek. Since Tv1 = (1 + · · · + 1, . . . , 1 + · · · + 1) = (n, · · · , n) = nv1, we see
that v1 is an eigenvector corresponding to the eigenvalue n. Similarly, for 2 ≤ k ≤ n, we
have Tvk = (1 − 1, . . . , 1 − 1) = (0, . . . , 0) = 0vk which implies that vk is an eigenvector
corresponding to the eigenvalue 0. Given a linear relation

0 = a1v1 + · · ·+ anvn = (a1 + a2 + a3 + · · ·+ an)e1 + (a1 − a2)e2 + · · ·+ (a1 − an)en ,

we obtain the system of linear equations

a1 + a2 + a3 + · · · + an = 0

a1 − a2 = 0

a1 − a3 = 0
... . . . ...

a1 − an = 0

which implies a1 = a2 = · · · = an = 0. Since this relation is trival, (v1, . . . , vn) is linearly
independent and forms a basis of Fn. Therefore, the eigenvalues of T are n and 0 (which
has multiplicity n − 1). The nonzero vectors in span(v1) are eigenvectors corresponding
to n and the nonzero vectors in span(v2, . . . , vn) are the eigenvectors corresponding to 0.
Moreover, the matrix of T with respect to (v1, . . . , vn) is

M(T ) =


n 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 . �


