

Solutions #6

1. Let V be a complex inner product space. For $v, w \in V$ prove that $\langle v, w \rangle = 0$ if and only if $\|v\| \leq \|v + aw\|$ for all $a \in \mathbb{C}$.

Solution.

\implies : Suppose $\langle v, w \rangle = 0$. Since $|a|\|w\|^2 \geq 0$ for all $a \in \mathbb{C}$, we have

$$\|v + aw\|^2 = \langle v + aw, v + aw \rangle = \langle v, v \rangle + \bar{a}\langle v, w \rangle + a\langle w, v \rangle + a\bar{a}\langle w, w \rangle = \|v\|^2 + |a|\|w\|^2 \geq \|v\|^2.$$

Taking square roots yields $\|v\| \leq \|v + aw\|$ for all $a \in \mathbb{C}$.

\Leftarrow : If $w = 0$ then $\langle v, w \rangle = 0$, so we may assume $w \neq 0$. We can express v as a scalar multiple of w plus a vector orthogonal to w as follows: $v = \frac{\langle v, w \rangle}{\|w\|^2}w + (v - \frac{\langle v, w \rangle}{\|w\|^2}w)$. Taking the magnitude and applying the Pythagorean Theorem yields

$$\|v\|^2 = \left\| \frac{\langle v, w \rangle}{\|w\|^2}w + \left(v - \frac{\langle v, w \rangle}{\|w\|^2}w\right) \right\|^2 = |\langle v, w \rangle|^2 + \left\| v + \left(-\frac{\langle v, w \rangle}{\|w\|^2}\right)w \right\|^2.$$

Since $\|v\| \leq \|v + aw\|$ for all $a \in \mathbb{C}$, we obtain $\left\| v + \left(-\frac{\langle v, w \rangle}{\|w\|^2}\right)w \right\| \geq \|v\|$ and

$$\|v\|^2 = |\langle v, w \rangle|^2 + \left\| v + \left(-\frac{\langle v, w \rangle}{\|w\|^2}\right)w \right\|^2 \geq |\langle v, w \rangle|^2 + \|v\|^2.$$

Therefore $0 \geq |\langle v, w \rangle|^2$ which implies $\langle v, w \rangle = 0$. \square

2. Prove the *polar identities*.

(a) On a real inner product space V , show that for all $v, w \in V$, we have

$$\langle v, w \rangle = \frac{1}{4}(\|v + w\|^2 - \|v - w\|^2).$$

(b) On a complex inner product space V , show that for all $v, w \in V$, we have

$$\langle v, w \rangle = \frac{1}{4}[\|v + w\|^2 - \|v - w\|^2 + i(\|v + iw\|^2 - \|v - iw\|^2)].$$

Solution.

(a) We have

$$\begin{aligned} \frac{1}{4}(\|v + w\|^2 - \|v - w\|^2) &= \frac{1}{4}(\langle v + w, v + w \rangle - \langle v - w, v - w \rangle) \\ &= \frac{1}{4}(\langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle - \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle - \langle w, w \rangle) \\ &= \frac{1}{4}(2\langle v, w \rangle + 2\langle w, v \rangle) = \langle v, w \rangle. \end{aligned}$$

(b) Similarly, we have

$$\begin{aligned}
& \frac{1}{4} [\|v + w\|^2 - \|v - w\|^2 + i(\|v + iw\|^2 - \|v - iw\|^2)] \\
&= \frac{1}{4} [\langle v + w, v + w \rangle - \langle v - w, v - w \rangle + i(\langle v + iw, v + iw \rangle - \langle v - iw, v - iw \rangle)] \\
&= \frac{1}{4} [\langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle - \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle - \langle w, w \rangle \\
&\quad + i\langle v, v \rangle + i\langle v, iw \rangle + i\langle iw, v \rangle + i\langle iw, iw \rangle - i\langle v, v \rangle - i\langle v, -iw \rangle - i\langle -iw, v \rangle - i\langle -iw, -iw \rangle] \\
&= \frac{1}{4} [2\langle v, w \rangle + 2\langle w, v \rangle + \langle v, w \rangle - \langle w, v \rangle + \langle v, w \rangle - \langle w, v \rangle] = \frac{1}{4} [4\langle v, w \rangle] = \langle v, w \rangle. \quad \square
\end{aligned}$$

3. Let V be the \mathbb{R} -vector space of continuous functions over $[-1, 1]$ with inner product $\langle f, g \rangle = \int_{-1}^1 f(t)g(t) dt$. Find the quartic (i.e. degree 4) polynomial $g(t)$ that best fits the function $f(t) = \cos(\pi t)$ over $[-1, 1]$.

Solution. An orthonormal basis of $U = \mathbb{F}[t]_{\leq 4}$ is obtained by applying the Gram–Schmidt algorithm to the basis $(1, t, t^2, t^3, t^4)$. From an example in class, the resulting basis is given by the first five Legendre polynomials $(f_0(t), f_1(t), f_2(t), f_3(t), f_4(t), f_5(t))$. The formula $f_k(t) = \left(\frac{\sqrt{2k+1}}{\sqrt{2}}\right) \frac{1}{2^k k!} \frac{d^k}{dt^k} (t^2 - 1)^k$ yields $f_0(t) = \frac{1}{\sqrt{2}}$, $f_1(t) = \frac{\sqrt{3}}{\sqrt{2}}t$, $f_2(t) = \frac{\sqrt{5}}{2\sqrt{2}}(3t^2 - 1)$, $f_3(t) = \frac{\sqrt{7}}{2\sqrt{2}}(5t^3 - 3t)$, and $f_4(t) = \frac{3}{8\sqrt{2}}(35t^4 - 30t^2 + 3)$. The polynomial that best fits $f(t) = \cos(\pi t)$ is the projection $P_U(f)$, given by

$$\begin{aligned}
P_U(f) &= \langle f, f_0 \rangle f_0(t) + \langle f, f_1 \rangle f_1(t) + \langle f, f_2 \rangle f_2(t) + \langle f, f_3 \rangle f_3(t) + \langle f, f_4 \rangle f_4(t) \\
&= \int_{-1}^1 \cos(\pi t) f_0(t) dt f_0(t) + \int_{-1}^1 \cos(\pi t) f_1(t) dt f_1(t) + \int_{-1}^1 \cos(\pi t) f_2(t) dt f_2(t) \\
&\quad + \int_{-1}^1 \cos(\pi t) f_3(t) dt f_3(t) + \int_{-1}^1 \cos(\pi t) f_4(t) dt f_4(t) \\
&= 2 \int_0^1 \cos(\pi t) f_0(t) dt f_0(t) + 2 \int_0^1 \cos(\pi t) f_2(t) dt f_2(t) + 2 \int_0^1 \cos(\pi t) f_4(t) dt f_4(t),
\end{aligned}$$

because f_1 and f_3 are odd, f_0 , f_2 , and f_4 are even, and $\cos(\pi t)$ is even. We evaluate

$$\begin{aligned}
\int_0^1 \cos(\pi t) dt &= \frac{\sin(\pi t)}{\pi} \Big|_0^1 = 0 \\
\int_0^1 t^2 \cos(\pi t) dt &= \frac{(\pi^2 t^2 - 2) \sin(\pi t) + 2\pi t \cos(\pi t)}{\pi^3} \Big|_0^1 = -2/\pi^2 \\
\int_0^1 t^4 \cos(\pi t) dt &= \frac{4\pi t(\pi^2 t^2 - 6) \cos(\pi t) + (\pi^4 t^4 - 12\pi^2 t^2 + 24) \sin(\pi t)}{\pi^5} \Big|_0^1 = -4(\pi^2 - 6)/\pi^4.
\end{aligned}$$

Thus,

$$\begin{aligned}
P_U(f) &= 2 \int_0^1 \cos(\pi t) f_0(t) dt f_0(t) + 2 \int_0^1 \cos(\pi t) f_2(t) dt f_2(t) + 2 \int_0^1 \cos(\pi t) f_4(t) dt f_4(t) \\
&= 2 \cdot 0 \cdot f_0(t) + 2 \left(\int_0^1 \cos(\pi t) \frac{\sqrt{5}}{2\sqrt{2}} (3t^2 - 1) dt \right) f_2(t) \\
&\quad + 2 \left(\int_0^1 \cos(\pi t) \frac{3}{8\sqrt{2}} (35t^4 - 30t^2 + 3) dt \right) f_4(t) \\
&= \left(\frac{3\sqrt{5}}{\sqrt{2}} \int_0^1 t^2 \cos(\pi t) dt - \frac{\sqrt{5}}{\sqrt{2}} \int_0^1 \cos(\pi t) dt \right) f_2(t) \\
&\quad + \left(\frac{105}{4\sqrt{2}} \int_0^1 t^4 \cos(\pi t) dt - \frac{90}{4\sqrt{2}} \int_0^1 t^2 \cos(\pi t) dt + \frac{9}{4\sqrt{2}} \int_0^1 \cos(\pi t) dt \right) f_4(t) \\
&= \left(\frac{3\sqrt{5}}{\sqrt{2}} (-2/\pi^2) - \frac{\sqrt{5}}{\sqrt{2}} (0) \right) f_2(t) \\
&\quad + \left(\frac{105}{4\sqrt{2}} (-4(\pi^2 - 6)/\pi^4) - \frac{90}{4\sqrt{2}} (-2/\pi^2) + \frac{9}{4\sqrt{2}} (0) \right) f_4(t) \\
&= \left(\frac{-3\sqrt{10}}{\pi^2} \right) f_2(t) + \left(\frac{45}{\sqrt{2}\pi^2} - \frac{105(\pi^2 - 6)}{\sqrt{2}\pi^4} \right) f_4(t) \\
&\approx (-0.9612171466) f_2(t) + (0.27456800889) f_4(t)
\end{aligned}$$

Hence, we can nicely approximate $\cos(\pi t)$ on the interval $[-1, 1]$ using the quartic polynomial $(-0.9612171466)f_2(t) + (0.27456800889)f_4(t)$, which approximately equals $p(t) = 2.5482t^4 - 4.4639t^2 + 0.978326$.

Remark. It's interesting to compare this approximation with the quartic Taylor polynomial $T(t) = 1 - \frac{\pi^2 t^2}{2} + \frac{\pi^4 t^4}{24}$. For example, $\cos(\pi/6) - T(1/6) \approx -0.00003$, while $\cos(\pi/6) - p(1/6) \approx 0.00973$, which shows that the Taylor polynomial gives a better approximation at the value $t = 1/6$. However, the polynomial we have computed is a *better overall fit* on the interval $[-1, 1]$. We see this through the norm, i.e. the distance squared from $\cos(\pi t)$ to the Taylor polynomial $T(t)$ is $\int_{-1}^1 (\cos(\pi t) - (1 - \frac{\pi^2 t^2}{2} + \frac{\pi^4 t^4}{24}))^2 dt \approx 0.20347$, while the distance squared from $\cos(\pi t)$ to $p(t)$ is $\int_{-1}^1 (\cos(\pi t) - (2.5482t^4 - 4.4639t^2 + 0.978326))^2 dt \approx 0.00067$. \square