
Solutions #6

1. Let V be a complex inner product space. For v, w ∈ V prove that 〈v, w〉 = 0 if and only
if ‖v‖ ≤ ‖v + aw‖ for all a ∈ C.

Solution.

=⇒: Suppose 〈v, w〉 = 0. Since |a|‖w‖2 ≥ 0 for all a ∈ C, we have

‖v+aw‖2 = 〈v+aw, v+aw〉 = 〈v, v〉+a〈v, w〉+a〈w, v〉+aa〈w,w〉 = ‖v‖2+ |a|‖w‖2 ≥ ‖v‖2 .

Taking square roots yields ‖v‖ ≤ ‖v + aw‖ for all a ∈ C.
⇐=: If w = 0 then 〈v, w〉 = 0, so we may assume w 6= 0. We can express v as a scalar

multiple of w plus a vector orthogonal to w as follows: v = 〈v,w〉
‖w‖2w +

(
v − 〈v,w〉‖w‖2w

)
.

Taking the magnitude and applying the Pythagorean Theorem yields

‖v‖2 =
∥∥∥ 〈v,w〉‖w‖2w +

(
v − 〈v,w〉‖w‖2w

)∥∥∥2 = |〈v, w〉|2 + ∥∥∥v + (− 〈v,w〉‖w‖2
)
w
∥∥∥2.

Since ‖v‖ ≤ ‖v + aw‖ for all a ∈ C, we obtain
∥∥∥v + (− 〈v,w〉‖w‖2

)
w
∥∥∥ ≥ ‖v‖ and

‖v‖2 = |〈v, w〉|2 +
∥∥∥v + (− 〈v,w〉‖w‖2

)
w
∥∥∥2 ≥ |〈v, w〉|2 + ‖v‖2 .

Therefore 0 ≥ |〈v, w〉|2 which implies 〈v, w〉 = 0. �

2. Prove the polar identities.

(a) On a real inner product space V , show that for all v, w ∈ V , we have

〈v, w〉 = 1
4

(
‖v + w‖2 − ‖v − w‖2

)
.

(b) On a complex inner product space V , show that for all v, w ∈ V , we have

〈v, w〉 = 1
4

[
‖v + w‖2 − ‖v − w‖2 + i

(
‖v + iw‖2 − ‖v − iw‖2

)]
.

Solution.

(a) We have

1
4

(
‖v + w‖2 − ‖v − w‖2

)
= 1

4

(
〈v + w, v + w〉 − 〈v − w, v − w〉

)
= 1

4

(
〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉 − 〈v, v〉+ 〈v, w〉+ 〈w, v〉 − 〈w,w〉

)
= 1

4

(
2〈v, w〉+ 2〈w, v〉

)
= 〈v, w〉 .

MATH 212: page 1 of 3



Solutions #6 MATH 212: page 2 of 3

(b) Similarly, we have

1
4

[
‖v + w‖2 − ‖v − w‖2 + i

(
‖v + iw‖2 − ‖v − iw‖2

)]
= 1

4

[
〈v + w, v + w〉 − 〈v − w, v − w〉+ i

(
〈v + iw, v + iw〉 − 〈v − iw, v − iw〉

)]
= 1

4

[
〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉 − 〈v, v〉+ 〈v, w〉+ 〈w, v〉 − 〈w,w〉

+i〈v, v〉+ i〈v, iw〉+ i〈iw, v〉+ i〈iw, iw〉 − i〈v, v〉 − i〈v,−iw〉 − i〈−iw, v〉 − i〈−iw,−iw〉
]

= 1
4

[
2〈v, w〉+ 2〈w, v〉+ 〈v, w〉 − 〈w, v〉+ 〈v, w〉 − 〈w, v〉

]
= 1

4

[
4〈v, w〉

]
= 〈v, w〉 . �

3. Let V be the R-vector space of continuous functions over [−1, 1] with inner product
〈f, g〉 =

∫ 1

−1 f(t)g(t) dt. Find the quartic (i.e. degree 4) polynomial g(t) that best fits the
function f(t) = cos(πt) over [−1, 1].

Solution. An orthonormal basis of U = F[t]≤4 is obtained by applying the Gram–Schmidt
algorithm to the basis (1, t, t2, t3, t4). From an example in class, the resulting basis is given
by the first five Legendre polynomials

(
f0(t), f1(t), f2(t), f3(t), f4(t), f5(t)

)
. The formula

fk(t) =
(√

2k+1√
2

)
1

2kk!
dk

dtk
(t2 − 1)k yields f0(t) = 1√

2
, f1(t) =

√
3√
2
t, f2(t) =

√
5

2
√
2
(3t2 − 1),

f3(t) =
√
7

2
√
2
(5t3 − 3t), and f4(t) = 3

8
√
2
(35t4 − 30t2 + 3). The polynomial that best fits

f(t) = cos(πt) is the projection PU(f), given by

PU(f) = 〈f, f0〉f0(t) + 〈f, f1〉f1(t) + 〈f, f2〉f2(t) + 〈f, f3〉f3(t) + 〈f, f4〉f4(t)

=

∫ 1

−1
cos(πt)f0(t) dt f0(t) +

∫ 1

−1
cos(πt)f1(t) dt f1(t) +

∫ 1

−1
cos(πt)f2(t) dt f2(t)

+

∫ 1

−1
cos(πt)f3(t) dt f3(t) +

∫ 1

−1
cos(πt)f4(t) dt f4(t)

= 2

∫ 1

0

cos(πt)f0(t) dt f0(t) + 2

∫ 1

0

cos(πt)f2(t) dt f2(t) + 2

∫ 1

0

cos(πt)f4(t) dt f4(t),

because f1 and f3 are odd, f0, f2, and f4 are even, and cos(πt) is even. We evaluate∫ 1

0

cos(πt) dt =
sin(πt)

π

∣∣∣∣1
0

= 0∫ 1

0

t2 cos(πt) dt =
(π2t2 − 2) sin(πt) + 2πt cos(πt)

π3

∣∣∣∣1
0

= −2/π2

∫ 1

0

t4 cos(πt) dt =
4πt(π2t2 − 6) cos(πt) + (π4t4 − 12π2t2 + 24) sin(πt)

π5

∣∣∣∣1
0

= −4(π2 − 6)/π4.
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Thus,

PU(f) = 2

∫ 1

0

cos(πt)f0(t) dt f0(t) + 2

∫ 1

0

cos(πt)f2(t) dt f2(t) + 2

∫ 1

0

cos(πt)f4(t) dt f4(t)

= 2 · 0 · f0(t) + 2

(∫ 1

0

cos(πt)

√
5

2
√
2
(3t2 − 1) dt

)
f2(t)

+ 2

(∫ 1

0

cos(πt)
3

8
√
2
(35t4 − 30t2 + 3) dt

)
f4(t)

=

(
3
√
5√
2

∫ 1

0

t2 cos(πt) dt−
√
5√
2

∫ 1

0

cos(πt) dt

)
f2(t)

+

(
105

4
√
2

∫ 1

0

t4 cos(πt) dt− 90

4
√
2

∫ 1

0

t2 cos(πt) +
9

4
√
2

∫ 1

0

cos(πt)

)
f4(t)

=

(
3
√
5√
2
(−2/π2)−

√
5√
2
(0)

)
f2(t)

+

(
105

4
√
2
(−4(π2 − 6)/π4)− 90

4
√
2
(−2/π2) +

9

4
√
2
(0)

)
f4(t)

=

(
−3
√
10

π2

)
f2(t) +

(
45√
2π2
− 105(π2 − 6)√

2π4

)
f4(t)

≈ (−0.9612171466)f2(t) + (0.27456800889)f4(t)

Hence, we can nicely approximate cos(πt) on the interval [−1, 1] using the quartic poly-
nomial (−0.9612171466)f2(t) + (0.27456800889)f4(t), which approximately equals p(t) =

2.5482t4 − 4.4639t2 + 0.978326.

Remark. It’s interesting to compare this approximation with the quartic Taylor polynomial
T (t) = 1− π2t2

2
+ π4t4

24
. For example, cos(π/6)−T (1/6) ≈ −0.00003, while cos(π/6)−p(1/6) ≈

0.00973, which shows that the Taylor polynomial gives a better approximation at the value
t = 1/6. However, the polynomial we have computed is a better overall fit on the interval
[−1, 1]. We see this through the norm, i.e. the distance squared from cos(πt) to the Taylor
polynomial T (t) is

∫ 1

−1(cos(πt)− (1− π2t2

2
+ π4t4

24
))2dt ≈ 0.20347, while the distance squared

from cos(πt) to p(t) is
∫ 1

−1(cos(πt)− (2.5482t4 − 4.4639t2 + 0.978326))2dt ≈ 0.00067. �


